Physical and Chemical Properties of Gayo Coffee Brewed by Boiling Method with Variation of Particle Coffee Ground

Authors

  • Evi Yufita Department of Physics, FMIPA Universitas Syiah Kuala, Darussalam, Aceh, Indonesia 23111, Indonesia
  • Teuku Muhammad Shadiq Maula Department of Physics, FMIPA Universitas Syiah Kuala, Darussalam, Aceh, Indonesia 23111, Indonesia
  • Gunawati Gunawati Department of Physics, FMIPA Universitas Syiah Kuala, Darussalam, Aceh, Indonesia 23111, Indonesia
  • Peter Lloyd Woodfield Griffith School of Engineering and Built Environment, Gold Coast Campus Griffith University, Parklands Dr Southport, Qld 4215, Australia, Australia
  • Elin Yusibani Department of Physics, FMIPA Universitas Syiah Kuala, Darussalam, Aceh, Indonesia 23111, Indonesia

DOI:

https://doi.org/10.25077/jif.17.1.9-18.2025

Keywords:

Gayo coffee, physical properties, chemical properties , boiling method

Abstract

The effect of coffee ground particle size by the boiling method on the values of physical and chemical parameters is studied. The coffee used is Arabica (Luwak, wine, honey) and Robusta from the Gayo Highlands, Aceh Province, Indonesia. Extraction of the coffee brew uses the boiling method with different particle sizes of coffee grounds (fine and coarse). The caffeine content in the coffee brew is identified using the FieldSpec4 Hi-Res Spectrometer. The particle size of coffee grounds affected the coffee brew's physical properties and caffeine content. The physical properties in the form of the pH value of Arabica coffee brew are lower than Robusta in a range from 4.87 to 4.97 and 5.13 to 5.28, respectively. The pH of coffee brew with fine particle sizes is slightly higher than for coarse ones for Robusta coffee brew. The density of the brew is in the vicinity range of 0.99 g/cm3. Arabica and Robusta brews differ in viscosity and caffeine release, influenced by coffee particle size. Coarse particles yield more caffeine in Arabica, while fine particles release more in Robusta, demonstrating the impact of grind size on caffeine extraction in coffee.

Downloads

Download data is not yet available.

References

Abubakar, Y., Muzaifa, M.D., Hasni, T., & Sulaiman, M.I. (2020). Effect of blend percentage and roasting degree on sensory quality of arabica-robusta coffee blend, The 1st International Conference on Agriculture and Bioindustry 2019. IOP Conf. Series: Earth and Environmental Science. 425, 012081 DOI: https://doi.org/10.1088/1755-1315/425/1/012081

Andueza, S., Paz De Pena, M., & Cid, C. (2003). Chemical and sensorial characteristics of espresso coffee as affected by grinding and torrefactoroase. Journal of Agricultural Food Chemistry, 51,7034-7039 DOI: https://doi.org/10.1021/jf034628f

Angeloni, G., Masella, P., Spadi, L., Guerrini, F., Corti, M., Bellumori, L., Calamai, & Parenti, M.I.A. (2023). Using ground coffee particle size and distribution to remodel beverage properties. Journal of European Food Research and Technology, 31 DOI: https://doi.org/10.1007/s00217-023-04210-3

Barbin, D.F., de Souza, A.L., Ma Felicio, Sun, D.W., Nixdorf, S.L., & Hirooka, E.Y. (2014). Application of infrared spectral techniques on quality and compositional attributes of coffee: An overview. Journal of Food Research International, 23-32 DOI: https://doi.org/10.1016/j.foodres.2014.01.005

Belitz, H.D., Grosch, W. & Schieberle, P. (2009). Coffee, Tea, Cocoa. In: Belitz, H.D. Grosch, W. Schieberle P. (eds) Food chemistry Springer, Leipzig, 938–951

Bell, L.N., Wetzel, C.R. & Grand, A.N. (1996). Caffeine content in coffee as influenced by grinding and brewing techniques. Journal of Food Research International, 29(8), 785–789 DOI: https://doi.org/10.1016/S0963-9969(97)00002-1

Bicho, N.C., Leitão, A.E., Ramalho, J.C., & Lidon, F.C. (2011). Identification of chemical clusters discriminators of the roast degree in Arabica and Robusta coffee beans. Journal of Eur Food Res Technol, 233:303–311 DOI: https://doi.org/10.1007/s00217-011-1518-5

Bicho, N.C., Lidon, F.C., Ramalho, J.C., & Leitã, A.N.E. (2013). Quality assessment of Arabica and Robusta green and roasted coffees – A review Emir. Journal of Food Agricultur, 25 (12): 945-950 DOI: https://doi.org/10.9755/ejfa.v25i12.17290

Blittersdorff, M. & Klatt, C. (2017). The Grind-Particles and Particularities. Journal of The Craft and Science of Coffee, 311-328, DOI: https://doi.org/10.1016/B978-0-12-803520-7.00013-X

Cameron, M.I., Morisco, D., Hofstetter, D., Uman, E., Wilkinson, J., & Kennedy, Z.C. (2023). Systematically improving espresso: Insights from mathematical modeling and experiment. Matter. Journal of Pacific Northwest, 2(3). 631–648 DOI: https://doi.org/10.1016/j.matt.2019.12.019

Clark, R.N. & Roush, T.L. (1984). Reflectance Spectroscopy: Quantitative Analysis Techniques for Remote Sensing. Journal of Geophysical Research, 89(B7), 6329-6340 DOI: https://doi.org/10.1029/JB089iB07p06329

Clark, R.N. (1999). Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, Journal of Remote Sensing for the Earth Sciences: Manual of Remote Sensing, 3, 3-58

Clarke, R. (1987). Coffee, Berlin: Springer, 109-145 DOI: https://doi.org/10.1007/978-94-009-3417-7_5

Cordoba, N., Alduenda, F., Fabian, M., Moreno, L., & Yolanda, R. (2020). Coffee extraction: A review of parameters and their influence on the physicochemical characteristics and flavor of coffee brews. Journal of Trends in Food Science and Technology. 9, 45–60 DOI: https://doi.org/10.1016/j.tifs.2019.12.004

Doğan, M., Aslan, D., Gürmeriç, V., Özgür, A., & Saraç, M.G. (2019). Powder caking and cohesion behaviors of coffee powders as affected by roasting and particle sizes: Principal component analyses (PCA) for flow and bioactive properties. Journal of Pawder Technology, 344, 222-232 DOI: https://doi.org/10.1016/j.powtec.2018.12.030

Dong, W., Hu, R., Chu, Z., Zhao, J., & Tan, L. (2017). Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Journal of Food Chemistry, 234, 121-130 DOI: https://doi.org/10.1016/j.foodchem.2017.04.156

Esteban-Díez, I. González-Sáiz, J.M., Sáenz-González, C., & Pizarro, C. (2007). Coffee varietal differentiation based on near infrared spectroscopy. Journal of Talanta, 71(1) 221-229 DOI: https://doi.org/10.1016/j.talanta.2006.03.052

Farah, A. (2012). Coffee Constituent, In Chu, Y.F. (Ed.). Coffee: Emerging Health Effects and Disease Prevention, Oxford: Blackwell Publishing Ltd, 21–58 DOI: https://doi.org/10.1002/9781119949893.ch2

Fernandes, R.V.B., Borges, S.V. & Botrel, D.A. (2012). Influence of spray drying operating conditions on microencapsulated rosemary essential oil properties. Journal of Ciencia Tecnologia Alimentos 33(1) 171-178 DOI: https://doi.org/10.1590/S0101-20612013000500025

Fujioka, K., & Shibamoto, T. (2008). Chlorogenic acid and caffeine contents in various commercial brewed coffees. Journal of Food Chemistry, 106, 217-221 DOI: https://doi.org/10.1016/j.foodchem.2007.05.091

Garattini, S. (1993). Caffeine, coffee, and health, Raven Press; New York

Herawati, D., Giriwono, P.E., Dewi, F.N.A., Kashiwagi, T. & Andarwulan, N. (2019). Critical roasting level determines bioactive content and antioxidant activity of Robusta coffee beans. Journal of Food Science Biotechnol, 28(1), 7–14 DOI: https://doi.org/10.1007/s10068-018-0442-x

Herna´ndez, J.A., Heyd, B., & Trystram, G. (2008). On-line assessment of brightness and surface kinetics during coffee roasting. Journal of Food Engineering, 87:314–322 DOI: https://doi.org/10.1016/j.jfoodeng.2007.12.009

International Coffee Organization, Retrieved from (http:ico.org. 2022)

Kerrigan, S. (2005). Fatal caffeine overdose: Two case reports. Journal of Forensic Science International, 153(1), 67-69 DOI: https://doi.org/10.1016/j.forsciint.2005.04.016

Lingle, T.R. (1996). The Coffee Brewing Handbook, A Systematyc Guide to Coffee Preparation, Lingle, T. R., Ed.; Speciality Coffee Association of America: Long Beach, CA

NakilcioğluTaş, E. & Ötleş, S. (2019) Physical characterization of Arabica ground coffee with different roasting degrees. Jounal of Anais da Academia Brasileira de Ciências (Annals of the Brazilian Academy of Sciences), 91(2) e 20180191,1-15 DOI: https://doi.org/10.1590/0001-3765201920180191

Otsogile, K., Seifu, E. & Bultosa, G. (2022). Physicochemical properties and sensory quality of Motlopi (Boscia albitrunca) coffee prepared using different temperature-time combinations. Journal of Heliyon, 8, 1-7 DOI: https://doi.org/10.1016/j.heliyon.2022.e10829

Ozguven, F., & Vursavus, K. (2005). Some physical, mechanical and aerodynamic properties of pine nuts. Journal of food engineering, 68, 191 – 196 DOI: https://doi.org/10.1016/j.jfoodeng.2004.05.031

Pereira, GVDM, Neto, D.P.C, Antonio, I., Júnior, M., Vásquez, Z.S., Medeiros, A.B.P., Vandenberghe, L.P.S. & Soccol. CR (2019). Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review. Journal of Food Chemistry, 272, 441-452 DOI: https://doi.org/10.1016/j.foodchem.2018.08.061

Ribeiro, J.S. Ferreira, M.M.C. & Salva, T.J.G. (2011). Chemometric models for the quantitative descriptive sensory analysis of Arabica coffee beverages using near infrared spectroscopy. Journal of Talanta, 83, 1352–1358 DOI: https://doi.org/10.1016/j.talanta.2010.11.001

Severini, C., Derossi, A., Ricci, I., Fiore, A.G. & Caporizzi, R. (2017). How much caffeine in coffee cup Effects of processing operations, extraction methods and variables, chapter from the book:The question of caffeine. Published by Intech, Wold's largesr Science, Technology and Medicine Open access book publiser, London, 45–85 DOI: https://doi.org/10.5772/intechopen.69002

Sharma, (2013). Flavoring Components of Raw Moonsooned Arabica Cofee and Their Changes During Radiation Processing. Journal of Agriculture Food Chemistry. 51(27), 45-50

Sobolı́k, V., Žitný, R., Tovcigrecko, V., Delgado, M. & Allaf, K. (2002). Viscosity and electrical conductivity of concentrated solutions of soluble coffee, Journal of food engineering, 51 (2), 93–98 DOI: https://doi.org/10.1016/S0260-8774(01)00042-5

Spiro, M. (1993). Modelling the aqueous extraction of soluble substances from ground roast coffee. Journal of Science Food Agricultural, 61:371–372 DOI: https://doi.org/10.1002/jsfa.2740610314

Spiro, M., & Selwood, RM (1984). The kinetics and mechanism of caffeine infusion from coffee: the effect of particle size. Journal of Science of Food Agriculture. 35, 915-924 DOI: https://doi.org/10.1002/jsfa.2740350817

Yüksela, A.N., Barutb, K.T.O., & Bayram, M. (2020). The effects of roasting, milling, brewing and storage processes on the physicochemical properties of Turkish coffee. Journal of LWT - Food Science and Technology 131, 109711 DOI: https://doi.org/10.1016/j.lwt.2020.109711

Yusibani, E. Woodfield, P. L. Rahwanto, A. Surbakti, M. S. Rajibussalim & Rahmi (2023). Physical and Chemical Properties of Indonesian Coffee Beans for Different Postharvest Processing Methods. Journal of Engineering and Technological Sciences, 55(1) 1-11 DOI: https://doi.org/10.5614/j.eng.technol.sci.2023.55.1.1

Downloads

Published

2024-11-30

How to Cite

Yufita, E., Muhammad Shadiq Maula, T., Gunawati, G. ., Lloyd Woodfield, P. ., & Yusibani, E. (2024). Physical and Chemical Properties of Gayo Coffee Brewed by Boiling Method with Variation of Particle Coffee Ground. JURNAL ILMU FISIKA | UNIVERSITAS ANDALAS, 17(1), 9–18. https://doi.org/10.25077/jif.17.1.9-18.2025

Citation Check