Simulation of the Effect of Dy3+ Dopant on the Mass Energy Absorption Coefficient and Relative Energy Response of TLD Made from Lithium Magnesium Borate Using MCNP

Authors

  • Nita Handayani Department of Physics, Faculty of Science and Technology, Sunan Kalijaga State Islamic University, Yogyakarta, 55281, Indonesia
  • Dyon Novan Prawira Department of Physics, Faculty of Science and Technology, Sunan Kalijaga State Islamic University, Yogyakarta, 55281, Indonesia
  • Fajar Arianto Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang, 50275, Indonesia

DOI:

https://doi.org/10.25077/jif.16.2.166-176.2024

Keywords:

MCNP, TLD, LMBDy3 , mass energy absorption coefficient, relative energy response

Abstract

Thermoluminescence dosimeter (TLD) is widely used as a personal and medical dosimeter. Several TLD materials show the characteristics of mass energy absorption coefficient and energy response relative to ICRU (International Commission on Radiation Units and Measurements) issue material as an equivalent material for human body soft tissue. This research aims to analyze the effect of Dy3+ dopant on the mass-energy absorption coefficient and relative energy response of Lithium Magnesium Borate (LMB) materials. The simulation was carried out using Monte Carlo N-Particle (MCNP) software. Calculations based on simulation and theoretical results will be compared statistically using paired t-tests. The study showed that adding a Dy3+ dopant to TLD material made of Lithium Magnesium Borate (LMB) only affected the mass-energy absorption coefficient and relative energy response for low radiation energy. Adding Dy3+ dopant increased the mass energy absorption coefficient and relative energy response in a reasonably small value. Based on these results, LMBDy3+ produces a better mass-energy absorption coefficient value for TLD materials. The results of the statistical tests show a significant difference in the mass energy absorption coefficient value. At the same time, there is no significant difference between the simulation results and theoretical calculations for the relative energy response.

Downloads

Download data is not yet available.

References

Ahamad, T., ALOthman, Z. A., Naushad, M., & Yusuf, K. (2021). Synthesis and Characterization of CuO Doped Lithium Magnesium Borate Glasses for Thermoluminescence Dosimetry. Optik, 231(January), 166369. https://doi.org/10.1016/j.ijleo.2021.166369 DOI: https://doi.org/10.1016/j.ijleo.2021.166369

Andreo, P. (2018). Monte Carlo simulations in radiotherapy dosimetry. Radiation Oncology, 13(1), 1–15. https://doi.org/10.1186/s13014-018-1065-3 DOI: https://doi.org/10.1186/s13014-018-1065-3

Anishia, S. R., Jose, M. T., Annalakshmi, O., & Ramasamy, V. (2011). Thermoluminescence Properties of Rare Earth Doped Lithium Magnesium Borate Phoshors. Journal of Luminescence, 131(12), 2492–2498. https://doi.org/10.1016/j.jlumin.2011.06.019 DOI: https://doi.org/10.1016/j.jlumin.2011.06.019

Attix, F. H. (2004). Introduction To Radiological Physics and Radiation Dosimetry. John Wiley & Sons, Inc.

Bakhsh, M., Wan Abdullah, W. S., Mustafa, I. S., Al Musawi, M. S. A., & Razali, N. A. N. (2018). Synthesis, characterisation and dosimetric evaluation of MgB4O7 glass as thermoluminescent dosimeter. Radiation Effects and Defects in Solids, 173(5–6), 446–460. https://doi.org/10.1080/10420150.2018.1471080 DOI: https://doi.org/10.1080/10420150.2018.1471080

Bakhsh, M., Yasuda, H., Ahmad, N., Ding Wong, J. H., & Shahrim Mustafa, I. (2022). Zinc-Doped Magnesium Borate Glass: A Potential Thermoluminescence Dosimeter for Extended Range of Dosimetric Applications. Applied Sciences (Switzerland), 12(15). https://doi.org/10.3390/app12157491 DOI: https://doi.org/10.3390/app12157491

Bos, A. J. J. (2001). High Sensitivity Thermoluminescence Dosimetry. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 184(1–2), 3–28. https://doi.org/10.1016/S0168-583X(01)00717-0 DOI: https://doi.org/10.1016/S0168-583X(01)00717-0

Chand, S., Mehra, R., & Chopra, V. (2021). Recent Developments in Phosphate Materials for Their TLD Applications. Luminescence, 36(8), 1808–1817. https://doi.org/10.1002/bio.3960 DOI: https://doi.org/10.1002/bio.3960

Charubala, C. S., Annalakshmi, O., Jakathamani, S., Sankaran, M. R., Venkatraman, B., & Jose, M. T. (2019). Studies on pelletised lithium magnesium borate TL material for eye lens dosimetry. Journal of Radiological Protection, 39(1), 178–192. https://doi.org/10.1088/1361-6498/aafb7c DOI: https://doi.org/10.1088/1361-6498/aafb7c

Duch, M. A., Dombrowski, H., & Hranitzky, C. (2021). Overview of Passive Area Dosimetry Systems Used in European Countries (Issue February). https://doi.org/10.12768/w4hj-ef08

Efenji, G. I., Iskandar, S. M., Yusof, N. N., Rabba, J. A., Mustapha, O. I., Fadhirul, I. M., Umar, S. A., Kamgba, F. A., Ushie, P. O., Munirah, J., Thair, H. K., Nabasu, S. E., Hayder, S. N., & Oke, A. O. (2024). Structural Properties of Thermoluminescence Dosimeter Materials, Preparation, Application, and Adaptability: A Systematic Review. Journal of Applied Sciences and Environmental Management, 28(4), 1129–1150. https://doi.org/10.4314/jasem.v28i4.13 DOI: https://doi.org/10.4314/jasem.v28i4.13

Fielding, A. L. (2023). Monte-Carlo Techniques for Radiotherapy Applications I: Introduction and Overview of The Different Monte-Carlo Codes. Journal of Radiotherapy in Practice, 22(247), 1–6. https://doi.org/10.1017/S1460396923000079 DOI: https://doi.org/10.1017/S1460396923000079

Gordon, E. (2023). Chemistry and Global Awareness. LibreTexts.

Harrison, R. M., Ainsbury, E., Alves, J., Bottollier-Depois, J. F., Breustedt, B., Caresana, M., Clairand, I., Fantuzzi, E., Fattibene, P., Gilvin, P., Hupe, O., KneZević, Z., Lopez, M. A., Olko, P., Olšovcová, V., Rabus, H., Rühm, W., Silari, M., Stolarczyk, L., … Woda, C. (2021). Eurados Strategic Research Agenda 2020: Vision for the Dosimetry of Ionising Radiation. Radiation Protection Dosimetry, 194(1), 42–56. https://doi.org/10.1093/rpd/ncab063 DOI: https://doi.org/10.1093/rpd/ncab063

Hashim, S., Omar, R. S., & Ghoshal, S. K. (2019). Realization of Dysprosium Doped Lithium Magnesium Borate Glass Based TLD Subjected to 1–100 Gy Photon Beam Irradiations. Radiation Physics and Chemistry, 163(February), 1–10. https://doi.org/10.1016/j.radphyschem.2019.05.016 DOI: https://doi.org/10.1016/j.radphyschem.2019.05.016

Hubbell, J. H., & Seltzer, S. M. (2004). X-Ray Mass Attenuation Coefficients.

Kaur, R., Bhatia, V., Kumar, D., Rao, S. M. D., Pal Singh, S., & Kumar, A. (2019). Physical, structural, optical and thermoluminescence behavior of Dy2O3 doped sodium magnesium borosilicate glasses. Results in Physics, 12(October 2018), 827–839. https://doi.org/10.1016/j.rinp.2018.12.005 DOI: https://doi.org/10.1016/j.rinp.2018.12.005

Maruyama, D., Yanagisawa, S., Koba, Y., Andou, T., & Shinsho, K. (2020). Usefulness of thermoluminescent slab dosimeter for postal dosimetry audit of external radiotherapy systems. Sensors and Materials, 32(4), 1461–1477. https://doi.org/10.18494/SAM.2020.2697 DOI: https://doi.org/10.18494/SAM.2020.2697

Petrovi, J. S. S., Kneževi, Ž. I., Kržanovi, N. L., Majer, M. C., Živanovi, M. Z., & Ciraj-bjelac, O. F. (2021). Review of The Thermoluminescent Dosimetry Method for The Environmental Dose Monitoring. Nuclear Technology & Radiation Protection, 36(2), 150–162. DOI: https://doi.org/10.2298/NTRP2102150S

Redd, R. A. (2003). Radiation Dosimetry and Medical Physics Calculations Using MCNP 5. Texas A&M University.

Souza, L. F., Santos, W. S., Belinato, W., Silva, R. M. V., Caldas, L. V. E., & Souza, D. N. (2019). Mass Energy Absorption Coefficients and Energy Responses of Magnesium Tetraborate Dosimeters for 0.02 MeV to 20 MeV Photons Using Monte Carlo Simulations. Applied Radiation and Isotopes, 148(April), 232–239. https://doi.org/10.1016/j.apradiso.2019.04.015 DOI: https://doi.org/10.1016/j.apradiso.2019.04.015

Terasawa, T., Dvorak, T., Ip, S., Raman, G., Lau, J., & Trikalinos, T. (2009). Review Annals of Internal Medicine Systematic Review : Charged-Particle Radiation Therapy for Cancer. Annals of Internal Medicine, 151(8), 556–565. DOI: https://doi.org/10.7326/0003-4819-151-8-200910200-00145

Yeni, N. C., Milvita, D., & Prasetio, H. (2019). Kalibrasi TLD-100 di Udara Menggunakan Radiasi Sinar-X Pada Rentang Radiation Qualities in Radiodiagnostik (RQR). JURNAL ILMU FISIKA | UNIVERSITAS ANDALAS, 11(2), 81–87. https://doi.org/10.25077/jif.11.2.81-87.2019 DOI: https://doi.org/10.25077/jif.11.2.81-87.2019

Yukihara, E. G., & McKeever, S. W. S. (2011). Optically Stimulated Luminescence. John Wiley & Sons Ltd. https://doi.org/10.1007/978-3-030-58292-0_150174 DOI: https://doi.org/10.1002/9780470977064

Downloads

Published

2024-08-16

How to Cite

Handayani, N. ., Novan Prawira, D. ., & Arianto, F. . (2024). Simulation of the Effect of Dy3+ Dopant on the Mass Energy Absorption Coefficient and Relative Energy Response of TLD Made from Lithium Magnesium Borate Using MCNP. JURNAL ILMU FISIKA | UNIVERSITAS ANDALAS, 16(2), 166–176. https://doi.org/10.25077/jif.16.2.166-176.2024

Issue

Section

Research Article

Citation Check