Effect of Isopropanol on Optical Properties of Fe3O4/ZnO/Graphene Quantum Dots (GQDs) Nanocomposite

Authors

  • Sintha Widiawati Material Physics Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang, 25163, Indonesia
  • Astuti Astuti Material Physics Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang, 25163, Indonesia

DOI:

https://doi.org/10.25077/jif.16.2.142-150.2024

Keywords:

Fe3O4/ZnO, GQDs, nanocomposite, isopropanol

Abstract

This study aims to investigate the impact of isopropanol on the optical properties of the Fe₃O₄/ZnO/GQDs nanocomposite. The synthesis of Fe₃O₄ and ZnO nanoparticles was conducted using the coprecipitation method, followed by the synthesis of GQDs using the hydrothermal method with varying concentrations of isopropanol. Subsequently, the Fe₃O₄/ZnO nanocomposite was combined with GQDs synthesized using the sonication method. The amalgamation of magnetic and luminescent materials holds promise for applications in the biomedical field, particularly in bioimaging. XRD data analysis revealed crystal structure alterations attributed to the incorporation of carbon elements in both ZnO and Fe₃O₄. The TEM results indicated a particle size of 16.2 nm for the Fe₃O₄/ZnO/GQDs nanocomposite with a 10 ml isopropanol variation. Identified phases from the XRD analysis include Fe₃O₄, ZnO, and GQDs. UV-Vis spectroscopy detected distinctive absorbance peaks at wavelengths of 323.7 nm, 333.0 nm, 329.9 nm, and 323.9 nm. Moreover, the energy gap exhibited an increase with escalating concentrations of isopropanol in the GQDs. Photoluminescence analysis yielded robust, broad emission bands characterized by orange and red luminescence.

Downloads

Download data is not yet available.

References

Deng, J., Lu, D., Zhang, X., Shi, G., & Zhou, T. (2017). Highly sensitive GQDs-MnO2 based assay with turn-on fluorescence for monitoring cerebrospinal acetylcholinesterase fluctuation: A biomarker for organophosphorus pesticides poisoning and management. Environmental Pollution, 224, 436–444. DOI: https://doi.org/10.1016/j.envpol.2017.02.024

Fajarullah, A., Irawan, H., & Pratomo, A. (2014). Ekstraksi Senyawa Metabolit Sekunder Lamun Thalassodendron Ciliatum Pada Pelarut Berbeda. Repository Umrah, 1(1), 1–15.

Ganganboina, A. B., Chowdhury, A. D., & Doong, R. (2017). Nano assembly of N-doped graphene quantum dots anchored Fe3O4/halloysite nanotubes for high performance supercapacitor. Electrochimica Acta, 245, 912–923. DOI: https://doi.org/10.1016/j.electacta.2017.06.002

Gholinejad, M., Ahmadi, J., Najera, C., Seyedhamzeh, M., Zareh, F., & Kompany‐Zareh, M. (2017). Graphene quantum dot modified Fe3O4 nanoparticles stabilize PdCu nanoparticles for enhanced catalytic activity in the Sonogashira reaction. ChemCatChem, 9(8), 1442–1449. DOI: https://doi.org/10.1002/cctc.201601519

Goldsborough, S. S., Cheng, S., Kang, D., Saggese, C., Wagnon, S. W., & Pitz, W. J. (2021). Effects of isoalcohol blending with gasoline on autoignition behavior in a rapid compression machine: isopropanol and isobutanol. Proceedings of the Combustion Institute, 38(4), 5655–5664. DOI: https://doi.org/10.1016/j.proci.2020.08.027

Gupta, J., Hassan, P. A., & Barick, K. C. (2021). Core-shell Fe3O4@ ZnO nanoparticles for magnetic hyperthermia and bio-imaging applications. AIP advances, 11(2). DOI: https://doi.org/10.1063/9.0000135

Henna, T. K., & Pramod, K. (2020). Graphene quantum dots redefine nanobiomedicine. Materials Science and Engineering: C, 110, 110651. DOI: https://doi.org/10.1016/j.msec.2020.110651

Jana, A., & Scheer, E. (2018). Study of optical and magnetic properties of graphene-wrapped ZnO nanoparticle hybrids. Langmuir, 34(4), 1497–1505. DOI: https://doi.org/10.1021/acs.langmuir.7b02953

Khosravanian, A., Moslehipour, A., & Ashrafian, H. (2021). A review on bioimaging, biosensing, and drug delivery systems based on graphene quantum dots. Prog. Chem. Biochem. Res, 4, 44.

Lapailaka, T., & Triandi, R. (2013). Penentuan ukuran Kristal (crystallite size) lapisan tipis PZT dengan metode XRD melalui pendekatan persamaan Debye Scherrer. Erudio Journal of Educational Innovation, 1(2). DOI: https://doi.org/10.18551/erudio.1-2.4

Liang, H., Tai, X., Du, Z., & Yin, Y. (2020). Enhanced photocatalytic activity of ZnO sensitized by carbon quantum dots and application in phenol wastewater. Optical Materials, 100, 109674. DOI: https://doi.org/10.1016/j.optmat.2020.109674

Manikandan, A., Yogasundari, M., Thanrasu, K., Dinesh, A., Raja, K. K., Slimani, Y., Jaganathan, S. K., Srinivasan, R., & Baykal, A. (2020). Structural, morphological and optical properties of multifunctional magnetic-luminescent ZnO@ Fe3O4 nanocomposite. Physica E: Low-dimensional Systems and Nanostructures, 124, 114291. DOI: https://doi.org/10.1016/j.physe.2020.114291

Morkoç, H., & Özgür, Ü. (2008). Zinc oxide: fundamentals, materials and device technology. John Wiley & Sons. DOI: https://doi.org/10.1002/9783527623945

Patsula, V., Kosinová, L., Lovrić, M., Ferhatovic Hamzić, L., Rabyk, M., Konefal, R., Paruzel, A., Šlouf, M., Herynek, V., & Gajović, S. (2016). Superparamagnetic Fe3O4 nanoparticles: synthesis by thermal decomposition of iron (III) glucuronate and application in magnetic resonance imaging. ACS applied materials & interfaces, 8(11), 7238–7247. DOI: https://doi.org/10.1021/acsami.5b12720

Ramanenka, A. A., Lizunova, A. A., Mazharenko, A. K., Kerechanina, M. F., Ivanov, V. V, & Gaponenko, S. V. (2020). Preparation and Optical Properties of Isopropanol Suspensions of Aluminum Nanoparticles. Journal of Applied Spectroscopy, 87(4). DOI: https://doi.org/10.1007/s10812-020-01051-w

Reaz, M., Haque, A., Cornelison, D. M., Wanekaya, A., Delong, R., & Ghosh, K. (2020). Magneto-luminescent zinc/iron oxide core-shell nanoparticles with tunable magnetic properties. Physica E: Low-dimensional Systems and Nanostructures, 123, 114090. DOI: https://doi.org/10.1016/j.physe.2020.114090

Rizvi, S. A. A., & Saleh, A. M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi pharmaceutical journal, 26(1), 64–70. DOI: https://doi.org/10.1016/j.jsps.2017.10.012

Sajjad, M., Makarov, V., Sultan, M. S., Jadwisienczak, W. M., Weiner, B. R., & Morell, G. (2018). Synthesis, optical, and magnetic properties of graphene quantum dots and iron oxide nanocomposites. Advances in Materials Science and Engineering, 2018(1), 3254081. DOI: https://doi.org/10.1155/2018/3254081

Selezneva, N. V, Nosovets, V. S., Sherokalova, E. M., Shishkin, D. A., & Baranov, N. V. (2022). Crystal structure and properties of layered compounds Fe0. 75TiS2–ySey. Solid State Sciences, 134, 107049. DOI: https://doi.org/10.1016/j.solidstatesciences.2022.107049

Wanas, W., Abd El-Kaream, S. A., Ebrahim, S., Soliman, M., & Karim, M. (2023). Cancer bioimaging using dual mode luminescence of graphene/FA-ZnO nanocomposite based on novel green technique. Scientific Reports, 13(1), 27. DOI: https://doi.org/10.1038/s41598-022-27111-z

Wang, L., Li, W., Wu, B., Li, Z., Wang, S., Liu, Y., Pan, D., & Wu, M. (2016). Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chemical Engineering Journal, 300, 75–82. DOI: https://doi.org/10.1016/j.cej.2016.04.123

Wu, M., Zhang, D., Zeng, Y., Wu, L., Liu, X., & Liu, J. (2015). Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy. Nanotechnology, 26(11), 115102. DOI: https://doi.org/10.1088/0957-4484/26/11/115102

Xu, J.-J., Lu, Y.-N., Tao, F.-F., Liang, P.-F., & Zhang, P.-A. (2023). ZnO nanoparticles modified by carbon quantum dots for the photocatalytic removal of synthetic pigment pollutants. ACS omega, 8(8), 7845–7857. DOI: https://doi.org/10.1021/acsomega.2c07591

Zhu, C., Yang, S., Wang, G., Mo, R., He, P., Sun, J., Di, Z., Yuan, N., Ding, J., & Ding, G. (2015). Negative induction effect of graphite N on graphene quantum dots: tunable band gap photoluminescence. Journal of Materials Chemistry C, 3(34), 8810–8816. DOI: https://doi.org/10.1039/C5TC01933H

Downloads

Published

2024-08-05

How to Cite

Widiawati, S., & Astuti, A. (2024). Effect of Isopropanol on Optical Properties of Fe3O4/ZnO/Graphene Quantum Dots (GQDs) Nanocomposite . JURNAL ILMU FISIKA | UNIVERSITAS ANDALAS, 16(2), 142–150. https://doi.org/10.25077/jif.16.2.142-150.2024

Issue

Section

Research Article

Citation Check