Validation of OpenMC Code for Low-cycle and Low-particle Simulations in the Neutronic Calculation

Authors

DOI:

https://doi.org/10.25077/jif.16.2.107-117.2024

Keywords:

Criticality, k-eff, Low-cycle, MSR FUJI-12, OpenMC

Abstract

Validation of Low-Cycle and Low-Particle OpenMC Simulation Codes for Neutronics Calculations has been conducted. This study validates OpenMC, an evolving open-source neutron analysis code. Validation of Low-Cycle and Low-Particle Codes is crucial as it allows for effective calculations with minimal computational resources. Determining the convergence point of cycles and minimum particles in low-cycle and low-particle calculations enables maintaining calculation accuracy, thus providing sufficiently accurate results. This study demonstrates that a minimum of 15,000 particles, 100 cycles (30 inactive, 70 active), is required for low-cycle simulations. A comparison of k-eff calculation results with the SRAC code for MSR FUJI-12 at 7 burnup points (0-27 MWd/ton) yields a maximum error of 0.7%. These results validate the effectiveness of OpenMC in achieving accurate neutronic calculations with limited computational resources

Downloads

Download data is not yet available.

References

Brown, F. B. (2006). On the use of shannon entropy of the fission distribution for assessing convergence of Monte Carlo criticality calculations. PHYSOR-2006 - American Nuclear Society’s Topical Meeting on Reactor Physics, 2006, 1–6. https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=43129860

Carney, S., Brown, F., Kiedrowski, B., & Martina, W. (2014). Theory and Applications of the Fission Matrix Method for Continuous-Energy. Annals of Nuclear Energy, 73, 423–431. https://doi.org/https://doi.org/10.1016/j.anucene.2014.07.020 DOI: https://doi.org/10.1016/j.anucene.2014.07.020

Farkas, G., Petriska, M., Michálek, S., Sluge, V., & Vanková, A. (2017). WWER-440 Criticality Calculations using MCNP5 Code. 18th Symposium of AER on VVER Reactor Physics and Reactor Safety. https://inis.iaea.org/collection/NCLCollectionStore/_Public/40/059/40059704.pdf

Hursin, M., Vasiliev, A., Rochman, D., Dokhane, A., & Ferroukhi, H. (2024). Monte Carlo analysis of BWR geometries using a cycle check-up methodology. Annals of Nuclear Energy, 195. https://doi.org/10.1016/j.anucene.2023.110170 DOI: https://doi.org/10.1016/j.anucene.2023.110170

IAEA. (2016). Status Report – MSR-FUJI (IAEA, Ed.). IAEA. https://aris.iaea.org/PDF/MSR-FUJI.pdf

Karomah, I., Mabruri, A. M., Syarifah, R. D., & Trianti, N. (2023). ANALYSIS OF CORE CONFIGURATION FOR CONCEPTUAL GAS COOLED FAST REACTOR (GFR) USING OPENMC. JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA, 25(2), 85. https://doi.org/10.55981/tdm.2023.6879 DOI: https://doi.org/10.55981/tdm.2023.6879

Kiedrowski, B. C., & Beyer, K. A. (2017). Monte Carlo Fission Source Convergence with Nearest-Neighbor Estimates of the Differential Entropy. International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, 53(30), 1–23. https://inis.iaea.org/search/search.aspx?orig_q=RN:53074355

Kumala Sari, A., Dewi Syarifah, R., & Arkundato, A. (n.d.). Preliminary Study of 300 MWth Pressurized Water Reactor with Carbide Fuel with Addition Neptunium 237 Using SRAC-COREBN Code. https://doi.org/10.1063/5.0108190 DOI: https://doi.org/10.1063/5.0108190

Kunlun, D. (2016). A Monte-Carlo Simulation for Neutron Transport in Spherical Reactor. National University of Singapore.

Mabruri, A. M., Syarifah, R. D., Aji, I. K., Hanifah, Z., Arkundato, A., & Jatisukamto, G. (2022). Neutronic analysis on molten salt reactor FUJI-12 using 235U as fissile material in LiF-BeF2-UF4 fuel. Eastern-European Journal of Enterprise Technologies, 5(8(119)), 6–12. https://doi.org/10.15587/1729-4061.2022.265798 DOI: https://doi.org/10.15587/1729-4061.2022.265798

Mickus, Ignas. (2021). Towards Efficient Monte Carlo Calculations in Reactor Physics : Criticality, Kinetics and Burnup Problems. Stockholm, Sweden: KTH Royal Institute of Technology.

Omar, M. R. (2021). An effective mesh-free fission source convergence indicator for Monte Carlo k-Eigenvalue problems. Nuclear Engineering and Design, 372(September), 110960. https://doi.org/10.1016/j.nucengdes.2020.110960 DOI: https://doi.org/10.1016/j.nucengdes.2020.110960

OpenMC. (2023). The OpenMC Monte Carlo Code. MIT. https://docs.openmc.org/en/stable/methods/geometry.html

Romano, P. K., Horelik, N. E., Herman, B. R., Nelson, A. G., Forget, B., & Smith, K. (2015). OpenMC: A state-of-the-art Monte Carlo code for research and development. Annals of Nuclear Energy, 82, 90–97. https://doi.org/10.1016/j.anucene.2014.07.048 DOI: https://doi.org/10.1016/j.anucene.2014.07.048

Souček, P., Beneš, O., Tosolin, A., & Konings, R. (2018). Chemistry of molten salt reactor fuel salt candidates. Transactions of the American Nuclear Society, 118(July), 114–117. https://publications.jrc.ec.europa.eu/repository/handle/JRC110789?mode=full

Suzuki, N., & Shimazu, Y. (2008). Reactivity-initiated-accident analysis without scram of a molten salt reactor. Journal of Nuclear Science and Technology, 45(6), 575–581. https://doi.org/10.1080/18811248.2008.9711881 DOI: https://doi.org/10.1080/18811248.2008.9711881

Syarifah, R. D., Nasrullah, M., Prasetya, F., Mabruri, A. M., Arkundato, A., Jatisukamto, G., & Handayani, S. (2024). Analysis of variation minor actinide pin configurations Np-237, AM-241, and Cm-244 in UN-PuN fueled pressurized water reactor. EUREKA: Physics and Engineering, 1, 36–46. https://doi.org/10.21303/2461-4262.2024.003048 DOI: https://doi.org/10.21303/2461-4262.2024.003048

Syarifah, R. D., Su’ud, Z., Basar, K., Irwanto, D., Pattipawaej, S. C., & Ilham, M. (2017a). WITHDRAWN: Comparison of uranium plutonium nitride (U Pu N) and thorium nitride (Th N) fuel for 500 MWth Gas Cooled Fast Reactor (GFR) longlife without refueling. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2017.07.183 DOI: https://doi.org/10.1016/j.ijhydene.2017.07.183

Syarifah, R. D., Su’ud, Z., Basar, K., Irwanto, D., Pattipawaej, S. C., & Ilham, M. (2018). Comparison of uranium plutonium nitride (U-Pu-N) and thorium nitride (Th-N) fuel for 500 MWth gas-cooled fast reactor (GFR) long life without refueling. International Journal of Energy Research, 42(1), 214–220. https://doi.org/10.1002/er.3923 DOI: https://doi.org/10.1002/er.3923

Syarifah, R. D., Su’ud, Z., Basar, K., & Irwanto, D. (2020). Actinide Minor Addition on Uranium Plutonium Nitride Fuel for Modular Gas Cooled Fast Reactor. Journal of Physics: Conference Series, 1493(1). https://doi.org/10.1088/1742-6596/1493/1/012020 DOI: https://doi.org/10.1088/1742-6596/1493/1/012020

Syarifah, R. D., Yulianto, Y., Su’ud, Z., Basar, K., & Irwanto, D. (2017b). Neutronic analysis of Thorium Nitride (Th, U233)N fuel for 500MWth Gas Cooled Fast Reactor (GFR) long life without refueling. Key Engineering Materials, 733 KEM, 47–50. https://doi.org/10.4028/www.scientific.net/KEM.733.47 DOI: https://doi.org/10.4028/www.scientific.net/KEM.733.47

Syarifah, R. D., Aula, M. H., Ardianingrum, A., Janah, L. N., & Maulina, W. (2022). Comparison of thorium nitride and uranium nitride fuel on small modular pressurized water reactor in neutronic analysis using SRAC code. Eastern-European Journal of Enterprise Technologies, 2(8 (116)), 21–28. https://doi.org/10.15587/1729-4061.2022.255849 DOI: https://doi.org/10.15587/1729-4061.2022.255849

Syarifah, R. D., Nabhan Mh, N., Hanifah, Z., Karomah, I., Mabruri, A. M., Arkundato, D. A., Fisika, J., Matematika, F., Ilmu, D., Alam, P., & No, J. K. (2021). Analisis Fraksi Volume Bahan Bakar Uranium Karbida Pada Reaktor Cepat Berpendingin Gas Menggunakan SRAC Code. Jurnal Jaring SainTek (JJST), 3(1), 13–18. http://ejurnal.ubharajaya.ac.id/index.php/jaring-saintek DOI: https://doi.org/10.31599/jaring-saintek.v3i1.333

Vaz, P. (2009). Neutron transport simulation (selected topics). Radiation Physics and Chemistry, 78(10), 829–842. https://doi.org/10.1016/j.radphyschem.2009.04.022 DOI: https://doi.org/10.1016/j.radphyschem.2009.04.022

Waris, A., Aji, I. K., Novitrian, Kurniadi, R., & Su’ud, Z. (2012). Plutonium and minor actinides utilization in thorium molten salt reactor. AIP Conference Proceedings, 1448(2012), 115–118. https://doi.org/10.1063/1.4725445 DOI: https://doi.org/10.1063/1.4725445

Waris, A., Aji, I. K., Pramuditya, S., Novitrian, Permana, S., & Su’Ud, Z. (2015). Comparative Studies on Plutonium and Minor Actinides Utilization in Small Molten Salt Reactors with Various Powers and Core Sizes. Energy Procedia, 71, 62–68. https://doi.org/10.1016/j.egypro.2014.11.855 DOI: https://doi.org/10.1016/j.egypro.2014.11.855

Yamaguchi, C. H., Stefani, G. L., & Santos, T. A. (2017). A general overview of generation IV molten salt reactor (MSR) and the use of thorium as fuel. International Nuclear Atlantic Conference - INAC 2017. https://inis.iaea.org/collection/NCLCollectionStore/_Public/48/103/48103603.pdf

Downloads

Published

2024-05-19

How to Cite

Mabruri, A. M., Syarifah, R. D., Aji, I. K. ., Arkundato, A. ., & Trianti, N. (2024). Validation of OpenMC Code for Low-cycle and Low-particle Simulations in the Neutronic Calculation . JURNAL ILMU FISIKA | UNIVERSITAS ANDALAS, 16(2), 107–117. https://doi.org/10.25077/jif.16.2.107-117.2024

Issue

Section

Research Article

Citation Check