Characterization of Silicon from Rice Husk Doped with Cobalt: Analysis of Structure and Magnetoelectric Properties

Authors

  • Rizky Kurniawan Department of Chemistry, Universitas Sumatera Utara, Medan, 20155, Indonesia
  • Andriayani Andriayani Department of Chemistry, Universitas Sumatera Utara, Medan, 20155, Indonesia
  • Saharman Gea Department of Chemistry, Universitas Sumatera Utara, Medan, 20155, Indonesia
  • Hadi Kurniawan Department of Engineering Physics, Universitas Islam Negeri Ar-Raniry Banda Aceh, 23111, Indonesia

DOI:

https://doi.org/10.25077/jif.16.2.97-106.2024

Keywords:

rice husk, silica, silicon, cobalt-doped silicon, magnetoelectric

Abstract

The development of Si-based materials has attracted increasing attention, particularly for application in semiconductors, batteries, sensors, and optical technology. Silicon has abundant availability, high energy storage capacity, and low work potential. However, it faces compatibility challenges due to its low electrical conductivity and extremely small magnetic susceptibility. This research aimed to investigate the influence of Co dopants on the structure, morphology, electrical conductivity, and magnetic susceptibility of silicon. Silicon was synthesized using the magnesiothermic reduction method, and silicon was modified with Co metal dopants at 0.1% and 0.5% concentrations through the impregnation method. XRD analysis results showed that Si, 0.1% Co/Si, and 0.5% Co/Si exhibit silicon diffraction patterns at 2θ = 28.42º; 47.28º; 56.11º; 69.13º; and 76.36º. The morphology of Si and Co/Si revealed a rough, uneven, and porous surface with particles appearing spherical. Electrical conductivity increases with Co concentration: Si = 1223 µS/cm, 0.1% Co/Si= 1376 µS/cm, and 0.5% Co/Si= 1529 µS/cm. Magnetic susceptibility measurements indicated that Si, 0.1% Co/Si, and 0.5% Co/Si are paramagnetic at a range of 1.18 x10-6 to 1.25 x10-5 SI. These characterization results confirmed that the modification with Co dopants can enhance the magnetoelectric properties of silicon.

Downloads

Download data is not yet available.

References

Andriayani, Sofyan, N., Sihotang, H., & Raja, S. L. (2014). Increased of Purity Silicon from Natural Sand with Variation of Heating Time through Magnesiotermal. Proceedings of the 2nd International Conference on Natural and Environmental Sciences (ICONES), 149–154.

Baig, N., Kammakakam, I., Falath, W., & Kammakakam, I. (2021). Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871. https://doi.org/10.1039/d0ma00807a

Bystrický, R., Škrátek, M., Rusnák, J., Precner, M., Ťapajna, M., Hnatko, M., & Šajgalík, P. (2023). Electrical and magnetic properties of silicon carbide composites with titanium and niobium carbide as sintering aids. Ceramics International, 49(3), 5319–5326. https://doi.org/https://doi.org/10.1016/j.ceramint.2022.10.055

Chae, S., Ko, M., Park, S., Kim, N., Ma, J., & Jaephil, C. (2013). Micron‐Sized Fe‐Cu‐Si Ternary Composite Anodes for High Energy Li‐ion Batteries. Energy & Environmental Science. https://doi.org/10.1039/b000000x

Daulay, A., Andriayani, Marpongahtun, & Gea, S. (2021). Extraction silica from rice husk with naoh leaching agent with temperature variation burning rice husk. Rasayan Journal of Chemistry, 14(3), 2125–2128. https://doi.org/10.31788/RJC.2021.1436351

Daulay, A., Andriayani, Marpongahtun, & Gea, S. (2022). Synthesis and application of silicon nanoparticles prepared from rice husk for lithium-ion batteries. Case Studies in Chemical and Environmental Engineering, 6(July), 100256. https://doi.org/10.1016/j.cscee.2022.100256

Dhanalakshmi, B., Sravani, G. M., Suresh, J., Reddy, P. V. S. S. S. N., Rao, K. E., Jyothula, S., & Beera, C. S. (2023). Impact of co-doping with Mn and Co/Mn on the structural, microstructural, dielectric, impedance, and magnetic characteristics of multiferroic bismuth ferrite nanoparticles. Applied Physics A, 129(6), 452. https://doi.org/10.1007/s00339-023-06737-4

Ding, N., Jiang, H.-H., Xu, C.-R., Shao, L., & Tang, B.-Y. (2023). Lattice distortion, mechanical and thermodynamic properties of (TiZrHf)C and (TiZrHf)N ceramics. Applied Physics A, 129(10), 720. https://doi.org/10.1007/s00339-023-06983-6

Dohnalová, K., & Kůsová, K. (2021). Optical Properties of Si Nanocrystals Enhanced by Ligands BT - Silicon Photonics IV: Innovative Frontiers (D. J. Lockwood & L. Pavesi (eds.); pp. 3–65). Springer International Publishing. https://doi.org/10.1007/978-3-030-68222-4_1

Dworkin, A. S., & Bredig, M. A. (1960). The heats of fusion of the alkali metal halides. The Journal of Physical Chemistry, 64(2), 269–272. https://doi.org/10.1021/j100831a023

Ensafi, A. A., Abarghoui, M. M., & Rezaei, B. (2017). Metal (Ni and Bi) coated porous silicon nanostructure, high-performance anode materials for lithium ion batteries with high capacity and stability. Journal of Alloys and Compounds, 712, 233–240. https://doi.org/10.1016/j.jallcom.2017.04.103

Favors, Z., Wang, W., Bay, H. H., Mutlu, Z., Ahmed, K., Liu, C., Ozkan, M., & Ozkan, C. S. (2014). Scalable synthesis of nano-silicon from beach sand for long cycle life Li-ion batteries. Scientific Reports, 4, 1–7. https://doi.org/10.1038/srep05623

Feng, Z., Peng, W., Wang, Z., Guo, H., Li, X., Yan, G., & Wang, J. (2021). Review of silicon-based alloys for lithium-ion battery anodes. International Journal of Minerals, Metallurgy and Materials, 28(10), 1549–1564. https://doi.org/10.1007/s12613-021-2335-x

Gaeta, M., Cavallaro, M., Vinci, S. L., Mormina, E., Blandino, A., Marino, M. A., Granata, F., Tessitore, A., Galletta, K., D’Angelo, T., & Visalli, C. (2021). Magnetism of materials: theory and practice in magnetic resonance imaging. Insights into Imaging, 12(1), 179. https://doi.org/10.1186/s13244-021-01125-z

Greenwood, N. N., & Earnshaw, A. (2012). Chemistry of the Elements. Elsevier.

Guo, Y., Zhou, S., & Zhao, J. (2021). Two-dimensional intrinsic ferromagnets with high Curie temperatures: synthesis, physical properties and device applications. Journal of Materials Chemistry C, 9(19), 6103–6121. https://doi.org/10.1039/D1TC00415H

Kaleli, M. J., Kamweru, P. K., Gichumbi, J. M., & Ndiritu, F. G. (2020). Characterization of rice husk ash prepared by open air burning and furnace calcination. Journal of Chemical Engineering and Materials Science, 11(2), 24–30. https://doi.org/10.5897/jcems2020.0348

Kiran, S. K., Ramesh, M., Shukla, S., & Saxena, S. (2020). Silicon Materials for Lithium-ion Battery Applications. In Materials Research Foundations (Issue 80, pp. 161–202). https://doi.org/10.21741/9781644900918-1

Kobayashi, S., Ikuhara, Y., & Mizoguchi, T. (2018). Lattice expansion and local lattice distortion in Nb- and La-doped SrTiO3 single crystals investigated by x-ray diffraction and first-principles calculations. Physical Review B, 98(13), 134114.

https://doi.org/10.1103/PhysRevB.98.134114

Kumar, D., & Johari, M. (2020). Characteristics of silicon crystal, its covalent bonding and their structure, electrical properties, uses. In AIP Conference Proceedings (Vol. 2220). https://doi.org/10.1063/5.0003505

Kumar, J., Linda, A., & Biswas, K. (2023). Lattice distortion in FCC HEAs and its effect on mechanical properties: Critical analysis and way forward. Journal of Applied Physics, 133(15), 155102. https://doi.org/10.1063/5.0144456

Li, S., Wang, J., Ye, Y., Tang, Y., Li, X., Gu, F., & Li, L. (2020). Composite Si-O-metal network catalysts with uneven electron distribution: Enhanced activity and electron transfer for catalytic ozonation of carbamazepine. Applied Catalysis B: Environmental, 263, 118311. https://doi.org/https://doi.org/10.1016/j.apcatb.2019.118311

Margalit, N., Xiang, C., Bowers, S. M., Bjorlin, A., Blum, R., & Bowers, J. E. (2021). Perspective on the future of silicon photonics and electronics. Applied Physics Letters, 118(22). https://doi.org/10.1063/5.0050117

Nakashima, R. (2020). Diamagnetic levitation of a milligram-scale silica using permanent magnets for the use in a macroscopic quantum measurement. Physics Letters A, 384(24), 126592. https://doi.org/https://doi.org/10.1016/j.physleta.2020.126592

Ng, K. K. (2002). Complete Guide to Semiconductor Devices, Second Edition. John Wiley & Sons. https://doi.org/10.1002/9781118014769

Nulu, A., Nulu, V., & Sohn, K. Y. (2021). Effect of Cobalt Doping on Enhanced Lithium Storage Performance of Nanosilicon. ChemElectroChem, 8(7), 1259–1269. https://doi.org/10.1002/celc.202001533

Nulu, A., Nulu, V., & Sohn, K. Y. (2022). Influence of transition metal doping on nano silicon anodes for Li-ion energy storage applications. Journal of Alloys and Compounds, 911, 164976. https://doi.org/10.1016/j.jallcom.2022.164976

Pamungkas, M. A., Sari, F., Abdurrouf, & Nurhuda, M. (2020). Magnetic properties of Ga-doped and As-doped hydrogenated silicene: Density Functional Theory (DFT) calculations. Journal of Physics: Conference Series, 1572(1). https://doi.org/10.1088/1742-6596/1572/1/012043

Qiu, C., Odarchenko, Y., Meng, Q., Cong, P., Schoen, M. A. W., Kleibert, A., Forrest, T., & Beale, A. M. (2020). Direct observation of the evolving metal-support interaction of individual cobalt nanoparticles at the titania and silica interface. Chemical Science, 11(48), 13060–13070. https://doi.org/10.1039/d0sc03113e

Redkin, A., Korzun, I., Reznitskikh, O., Yaroslavtseva, T., Zaikov, Y., & Kumkov, S. (2018). Heat of fusion of halide salts and their eutectics. Journal of Thermal Analysis and Calorimetry, 131(2), 2021–2026. https://doi.org/10.1007/s10973-017-6650-4

Rhaman, M. M., Matin, M. A., Al Mamun, M. A., Hussain, A., Hossain, M. N., Das, B. C., Hakim, M. A., & Islam, M. F. (2020). Enhanced electrical conductivity and multiferroic property of cobalt-doped bismuth ferrite nanoparticles. Journal of Materials Science: Materials in Electronics, 31(11), 8727–8736. https://doi.org/10.1007/s10854-020-03407-6

Saif, O. M., Zekry, A. H., Abouelatta, M., & Shaker, A. (2023). A Comprehensive Review of Tandem Solar Cells Integrated on Silicon Substrate: III/V vs Perovskite. Silicon, 15(15), 6329–6347. https://doi.org/10.1007/s12633-023-02466-8

Salem, M. A., Talla, J. A., & Al-Moumani, A. L. (2023). Electronic and Magnetic Properties of Doped Silicon Carbide Nanosheet Under an External Electric Field. International Journal of Theoretical Physics, 62(7), 137. https://doi.org/10.1007/s10773-023-05415-8

Sihombing, J. L., Gea, S., Wirjosentono, B., Agusnar, H., Pulungan, A. N., Herlinawati, H., & Yusuf, M. (2020). Characteristic and Catalytic Performance of Co and Co-Mo Metal Impregnated in Sarulla Natural Zeolite Catalyst for Hydrocracking of MEFA Rubber Seed Oil into Biogasoline Fraction. Catalysts, 10, 121.

Tan, C. S. (2022). Density Functional Theory Study of Metallic Silicon (111) Plane Structures. ACS Omega, 7(6), 5385–5392. https://doi.org/10.1021/acsomega.1c06614

Tan, Y., Jiang, T., & Chen, G. Z. (2021). Mechanisms and Product Options of Magnesiothermic Reduction of Silica to Silicon for Lithium-Ion Battery Applications. Frontiers in Energy Research, 9(March), 1–19. https://doi.org/10.3389/fenrg.2021.651386

Thio, P. R., Koffi, K. B., Konan, K. D., & Yao, K. A. (2021). Production of High-Purity Silica Sand from Ivorian Sedimentary Basin by Attrition without Acid Leaching Process for Windows Glass Making. Journal of Minerals and Materials Characterization and Engineering, 09(04), 345–361. https://doi.org/10.4236/jmmce.2021.94024

Tian, Y., Zhu, Z., Ge, Z., Sun, A., Zhang, Q., Huang, S., Li, H., & Meng, J. (2020). Electronic and magnetic properties of 3d transition metal doped MoSe2 monolayer. Physica E: Low-Dimensional Systems and Nanostructures, 116, 113745. https://doi.org/https://doi.org/10.1016/j.physe.2019.113745

Tyagi, A., Banerjee, S., Cherusseri, J., & Kar, K. K. (2020). Characteristics of Transition Metal Oxides BT - Handbook of Nanocomposite Supercapacitor Materials I: Characteristics (K. K. Kar (ed.); pp. 91–123). Springer International Publishing. https://doi.org/10.1007/978-3-030-43009-2_3

Xu, C., Hao, Q., & Zhao, D. (2016). Facile fabrication of a nanoporous Si/Cu composite and its application as a high-performance anode in lithium-ion batteries. Nano Research, 9(4), 908–916. https://doi.org/10.1007/s12274-015-0973-x

Xu, Z. L., Liu, X., Luo, Y., Zhou, L., & Kim, J. K. (2017). Nanosilicon anodes for high performance rechargeable batteries. Progress in Materials Science, 90(July), 1–44. https://doi.org/10.1016/j.pmatsci.2017.07.003

Zhang, L., & Cui, Z. (2022). Electronic , Magnetic , and Optical Performances of Non-Metals Doped Silicon Carbide. 10(April), 1–8. https://doi.org/10.3389/fchem.2022.898174

Zuo, X., Yang, Q., He, Y., Cheng, Y. J., Yin, S., Zhu, J., Müller-Buschbaum, P., & Xia, Y. (2022). High-Temperature Magnesiothermic Reduction Enables HF-Free Synthesis of Porous Silicon with Enhanced Performance as Lithium-Ion Battery Anode. Molecules, 27(21). https://doi.org/10.3390/molecules27217486

Downloads

Published

2024-04-25

How to Cite

Kurniawan, R. ., Andriayani, A., Gea, S., & Kurniawan, H. . (2024). Characterization of Silicon from Rice Husk Doped with Cobalt: Analysis of Structure and Magnetoelectric Properties . JURNAL ILMU FISIKA, 16(2), 97–106. https://doi.org/10.25077/jif.16.2.97-106.2024

Citation Check