The Synthesized-Hydroxyapatite Powder from Anadara Granosa Shells using Deposition Time Method for Biomedical Applications

Authors

  • Sunardi Sunardi Department of Physics, Faculty of Mathematics and Natural Science, Universitas Jenderal Soedirman, Jalan Dr. Suparno Karangwangkal, Purwokerto 53123, Indonesia
  • Nidha Aulia Qurrata A’yun Department of Physics, Faculty of Mathematics and Natural Science, Universitas Jenderal Soedirman, Jalan Dr. Suparno Karangwangkal, Purwokerto 53123, Indonesia
  • Qorinah Wulan Dari Department of Physics, Faculty of Mathematics and Natural Science, Universitas Jenderal Soedirman, Jalan Dr. Suparno Karangwangkal, Purwokerto 53123, Indonesia
  • Jamrud Aminuddin Department of Physics, Faculty of Mathematics and Natural Science, Universitas Jenderal Soedirman, Jalan Dr. Suparno Karangwangkal, Purwokerto 53123, Indonesia
  • Bilalodin Bilalodin Department of Physics, Faculty of Mathematics and Natural Science, Universitas Jenderal Soedirman, Jalan Dr. Suparno Karangwangkal, Purwokerto 53123, Indonesia
  • Budi Praktino Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Jenderal Soedirman, Jalan Dr. Suparno Karangwangkal, Purwokerto 53123, Indonesia
  • Evi Yulianti National Research and Innovation Agency (BRIN), PRMM: Advanced Materials Research Center, KST BJ Habibie Serpong, Tangerang15314, Indonesia
  • Agung Bambang Setio Utomo Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Jalan Bulaksumur, Yogyakarta 55281, Indonesia
  • Kartika Sari 1Department of Physics, Faculty of Mathematics and Natural Science, Universitas Jenderal Soedirman, Jalan Dr. Suparno Karangwangkal, Purwokerto 53123, Indonesia

DOI:

https://doi.org/10.25077/jif.16.1.88-96.2024

Keywords:

Hydroxyapatite, Anadara Granosa shells , XRD , FTIR , SEM

Abstract

Hydroxyapatite (HAp) powder, one of the biomaterials derived from natural sources, could be used in biomedical applications. In this research, the synthesized-HAp powder from Anadara Granosa shells as raw materials had a high calcium carbonate content with variations in deposition time using the precipitation method. Variations of deposition time used were 0 (S0), 24 (S24), and 48 (S48) hours. Fourier Transform Infrared (FTIR), X-Ray Diffractions (XRD), and Scanning Electron Microscopy (SEM) were used to investigate the chemical structure, phase analysis, and morphology of the synthesized HAp powder. FTIR results of the S0, S24, and S48 showed that the functional groups ,  and were formed at variations in the deposition time. The XRD results showed that the smallest of crystallite size of S48 was 26.03 nm, and the crystallinity degree of S24 was 38.74%. The grain dispersity of the synthesized-hydroxyapatite powder from SEM results were uniform, agglomeration, and spherical, irregular shape. The Ca, P, Mg, and Si compositions were shown in the synthesized-hydroxyapatite powder. The deposition time affects the synthesized-Hydroxyapatite (HAp) powder from the Anadara Granosa shell, and it is a potential raw material for biomedical applications.

Downloads

Download data is not yet available.

References

Afriani, F., Amelia, R., Hudatwi, M., & Tiandho, Y. (2020). Hydroxyapatite from natural sources: methods and its characteristics. IOP Conference Series: Earth and Environmental Science, 599(1), 12055.

Almukarrama, & Yusuf, Y. (2019). Development carbonated hydroxyapatite powders from oyster shells (Crassostrea gigas) by sintering time controlling. IOP conference series: materials science and engineering, 546(4), 42001.

Azis, Y., Jamarun, N., Zultiniar, Z., Arief, S., & Nur, H. (2015). Synthesis of hydroxyapatite by hydrothermal method from cockle shell (Anadara granosa). J Chem Pharm Res, 7(5), 798–804.

Bulut, N., Kaygili, O., Hssain, A. H., Dorozhkin, S. V, Abdelghani, B., Orek, C., Kebiroglu, H., Ates, T., & Kareem, R. O. (2023). Mg-Dopant Effects on Band Structures of Zn-Based Hydroxyapatites: A Theoretical Study. Iranian Journal of Science, 47(5), 1843–1859.

Dhanaraj, K., Kumar, C. S., & Suresh, G. (2018). Characterization of calcium oxide (CaO) derived from Perna viridis shell waste through solid state reaction. J. Appl. Sci. Computation, 5(12), 658–665.

Dhanaraj, K., & Suresh, G. (2018). Conversion of waste sea shell (Anadara granosa) into valuable nanohydroxyapatite (nHAp) for biomedical applications. Vacuum, 152, 222–230.

Fitriyana, D. F., Ismail, R., Santosa, Y. I., Nugroho, S., Hakim, A. J., & Al Mulqi, M. S. (2019). Hydroxyapatite synthesis from clam shell using hydrothermal method: A review. 2019 International Biomedical Instrumentation and Technology Conference (IBITeC), 1, 7–11.

Ismail, R., Fitriyana, D. F., Santosa, Y. I., Nugroho, S., Hakim, A. J., Al Mulqi, M. S., Jamari, J., & Bayuseno, A. P. (2021). The potential use of green mussel (Perna Viridis) shells for synthetic calcium carbonate polymorphs in biomaterials. Journal of Crystal Growth, 572, 126282.

Kadir, L. A., Permana, D., & Azis, T. (2022). Sintesis dan Karakterisasi Bionano Hidroksiapatit (HAp) Secara Insitu Dengan Metode Hidrotermal. Cokroaminoto Journal of Chemical Science, 4(2), 1–4.

Kareem, R. O., Bulut, N., & Kaygili, O. (2024). Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, medical applications, and fabrication methods. Journal of Chemical Reviews, 6(1), 1–26.

Khoiriyah, M. (2018). Sintesis dan Karakterisasi Bone Graft dari Komposit Hidroksiapatit/Kolagen/Kitosan (HA/Coll/Chi) dengan Metode Ex-Situ sebagai Kandidat Implan TulangSynthesis and Characteritation of Bone Graft from Hydroxyapatite/Collagen/Chitosan (HA/Coll/Chi) Composite By Ex-Situ Method As A Bone Implant Candidates. Unesa Journal of Chemistry, 7(1).

Mtavangu, S. G., Mahene, W., Machunda, R. L., van der Bruggen, B., & Njau, K. N. (2022). Cockle (Anadara granosa) shells-based hydroxyapatite and its potential for defluoridation of drinking water. Results in Engineering, 13, 100379.

Odusote, J. K., Danyuo, Y., Baruwa, A. D., & Azeez, A. A. (2019). Synthesis and characterization of hydroxyapatite from bovine bone for production of dental implants. Journal of applied biomaterials & functional materials, 17(2), 2280800019836829.

Pazarlioglu, S., & Salman, S. (2019). Effect of lanthanum oxide additive on the sinterability, physical/mechanical, and bioactivity properties of hydroxyapatite-alpha alumina composite. Journal of the Australian Ceramic Society, 55, 1195–1209.

Pu’ad, N. A. S. M., Koshy, P., Abdullah, H. Z., Idris, M. I., & Lee, T. C. (2019). Syntheses of hydroxyapatite from natural sources. Heliyon, 5(5).

Rizkayanti, Y., & Yusuf, Y. (2018). Effect of temperature on syntesis of hydroxyapatite from cockle shells (Anadara granosa). International Journal of Nanoelectronics and Materials, 11(2018), 43–50.

Saharudin, S. H., Shariffuddin, J. H., & Nordin, N. (2017). Biocomposites from (Anadara granosa) shells waste for bone material applications. IOP Conference Series: Materials Science and Engineering, 257(1), 12061.

Sari, M., & Yusuf, Y. (2018). Synthesis and characterization of hydroxyapatite based on green mussel shells (perna viridis) with the variation of stirring time using the precipitation method. IOP Conference Series: Materials Science and Engineering, 432, 12046.

Siswanto, S., Hikmawati, D., Aminatun, A., & Zamawi Ichsan, M. (2019). Hydroxyapatite-Collagen Composite Made from Coral and Chicken Claws for Bone Implant Application. Materials Science Forum, 966, 145–150.

Srichanachaichok, W., & Pissuwan, D. (2023). Micro/Nano Structural Investigation and Characterization of Mussel Shell Waste in Thailand as a Feasible Bioresource of CaO. Materials, 16(2), 805.

Szterner, P., & Biernat, M. (2022). The synthesis of hydroxyapatite by hydrothermal process with calcium lactate pentahydrate: the effect of reagent concentrations, pH, temperature, and pressure. Bioinorganic Chemistry and Applications, 2022.

Taji, L. S., Wiyono, D. E., Karisma, A. D., Surono, A., & Ningrum, E. O. (2022). Hydroxyapatite Based Material: Natural Resources, Synthesis Methods, 3D Print Filament Fabrication, and Filament Filler. IPTEK The Journal of Engineering, 8(1), 26–35.

Tanzi, M. C., Farè, S., & Candiani, G. (2019). Foundations of biomaterials engineering. Academic Press.

Tjandra, K. C., Novriansyah, R., Limijadi, E. K. S., Kuntjoro, L., & Hendrianingtyas, M. (2023). The effect of green mussel (Perna viridis) shells’ hydroxyapatite application on alkaline phosphatase levels in rabbit femur bone defect. F1000Research, 12, 631.

Wu, S.-C., Hsu, H.-C., Wang, H.-F., Liou, S.-P., & Ho, W.-F. (2023). Synthesis and Characterization of Nano-Hydroxyapatite Obtained from Eggshell via the Hydrothermal Process and the Precipitation Method. Molecules, 28(13), 4926.

Zainol, I., Zainurin, M. A. N., Bakar, N. H. A., Jaafar, C. N. A., & Mudhafar, M. (2022). Characterisation of porous hydroxyapatite beads prepared from fish scale for potential bone filler applications. Malaysian Journal of Microscopy, 18(2), 48–57.

Downloads

Published

2024-03-01

How to Cite

Sunardi, S., A’yun, N. A. Q. ., Dari, Q. W. ., Aminuddin, J., Bilalodin, B., Praktino, B. ., Yulianti, E. ., Utomo, A. B. S. ., & Sari, K. (2024). The Synthesized-Hydroxyapatite Powder from Anadara Granosa Shells using Deposition Time Method for Biomedical Applications. JURNAL ILMU FISIKA, 16(1), 88–96. https://doi.org/10.25077/jif.16.1.88-96.2024

Issue

Section

Research Article

Citation Check