Study of The Effect of Calcination Temperature on the Phase Composition of ZnO Powder Synthesized via The Sol-Gel Method

Authors

  • Nurhayati Nurhayati Department of Physics, Institut Teknologi Kalimantan, Jalan Soekarno-Hatta Km. 15, Balikpapan 76127, Indonesia
  • Musyarofah Musyarofah Department of Physics, Institut Teknologi Kalimantan, Jalan Soekarno-Hatta Km. 15, Balikpapan 76127, Indonesia
  • Swastya Rahastama Department of Physics, Institut Teknologi Kalimantan, Jalan Soekarno-Hatta Km. 15, Balikpapan 76127, Indonesia
  • Dian Mart Shoodiqin Department of Physics, Institut Teknologi Kalimantan, Jalan Soekarno-Hatta Km. 15, Balikpapan 76127, Indonesia
  • Budi Prayitno Department of Mechanical Engineering, Univer Universitas Balikpapan, Jalan Pupuk Raya, Balikpapan 76114, Indonesia
  • Nurrisma Puspitasari Department of Physics, Institut Teknologi Sepuluh Nopember, Jl. Arief Rahman Hakim, Surabaya 60111, Indonesia

DOI:

https://doi.org/10.25077/jif.16.1.71-78.2024

Abstract

This study investigated the effect of calcination temperature on the phase composition and crystal size of zinc oxide powders synthesised by the sol-gel method. Zn powder, HCl and NaOH were used as precursors in a multi-step process involving dissolution, titration, gel formation, leaching, drying and calcination at temperatures ranging from 300°C to 700°C for 2 hours. Rietveld analysis of X-ray diffraction (XRD) data using MAUD and Rietica software determined phase composition and crystal size. Initial analysis identified a single simonkolleite phase (Zn5(OH)8Cl2) prior to calcination, which disappeared at 500°C. Wurtzite (ZnO) appeared at 300°C, accompanied by secondary phases (NaCl and ZnCl2). The wurtzite content increased to 81.42 wt% at 700°C. Calcination temperature also influenced crystal size, which ranged from 27.34 nm to 110.61 nm for wurtzite at different temperatures. The results highlight the dynamic changes in phase composition and crystal size with different calcination temperatures, providing valuable insights into tailoring zinc oxide properties for various applications.

Downloads

Download data is not yet available.

References

Ayoub, I., Kumar, V., Abolhassani, R., Sehgal, R., Sharma, V., Sehgal, R., Swart, H. C., & Mishra, Y. K. (2022). Advances in ZnO: Manipulation of defects for enhancing their technological potentials. Nanotechnology Reviews, 11(1), 575–619. DOI: https://doi.org/10.1515/ntrev-2022-0035

Bokov, D., Turki Jalil, A., Chupradit, S., Suksatan, W., Javed Ansari, M., Shewael, I. H., Valiev, G. H., & Kianfar, E. (2021). Nanomaterial by sol-gel method: synthesis and application. Advances in Materials Science and Engineering, 2021, 1–21. DOI: https://doi.org/10.1155/2021/5102014

Borysiewicz, M. A. (2019). ZnO as a functional material, a review. Crystals, 9(10), 505. DOI: https://doi.org/10.3390/cryst9100505

Chung, Y. T., Ba-Abbad, M. M., Mohammad, A. W., Hairom, N. H. H., & Benamor, A. (2015). Synthesis of minimal-size ZnO nanoparticles through sol–gel method: Taguchi design optimisation. Materials & Design, 87, 780–787. DOI: https://doi.org/10.1016/j.matdes.2015.07.040

Clarke, B., & Ghandi, K. (2023). The Interplay of Growth Mechanism and Properties of ZnO Nanostructures for Different Applications. Small, 19(44), 2302864. DOI: https://doi.org/10.1002/smll.202302864

Das, A., & Basak, D. (2021). Efficacy of ion implantation in zinc oxide for optoelectronic applications: A review. ACS Applied Electronic Materials, 3(9), 3693–3714. DOI: https://doi.org/10.1021/acsaelm.1c00393

Elsandika, G., Putri, A. D. C., Musyarofah, M., & Pratapa, S. (2019). Synthesis of ZrSiO4 powders by a sol-gel method with varied calcination temperatures. IOP Conference Series: Materials Science and Engineering, 496(1), 12047. DOI: https://doi.org/10.1088/1757-899X/496/1/012047

Feng, J., Huang, H., Fang, T., Wang, X., Yan, S., Luo, W., Yu, T., Zhao, Y., Li, Z., & Zou, Z. (2019). Defect engineering in semiconductors: manipulating nonstoichiometric defects and understanding their impact in oxynitrides for solar energy conversion. Advanced Functional Materials, 29(11), 1808389. DOI: https://doi.org/10.1002/adfm.201808389

Hossain, N., Mobarak, M. H., Mimona, M. A., Islam, M. A., Hossain, A., Zohur, F. T., & Chowdhury, M. A. (2023). Advances and significances of nanoparticles in semiconductor applications–A review. Results in Engineering, 101347. DOI: https://doi.org/10.1016/j.rineng.2023.101347

Khan, G. R., & Dar, R. A. (2021). Smart interplay of reaction parameters in sol-gel protocols of ZnO nanocrystallites. Materials Science and Engineering: B, 267, 115110. DOI: https://doi.org/10.1016/j.mseb.2021.115110

Kousseff, C. J., Halaksa, R., Parr, Z. S., & Nielsen, C. B. (2021). Mixed ionic and electronic conduction in small-molecule semiconductors. Chemical Reviews, 122(4), 4397–4419. DOI: https://doi.org/10.1021/acs.chemrev.1c00314

Lhimr, S., Bouhlassa, S., & Ammary, B. (2021). Influence of calcination temperature on size, morphology and optical properties of ZnO/C composite synthesized by a colloidal method. Indonesian Journal of Chemistry, 21(3), 537–545. DOI: https://doi.org/10.22146/ijc.56309

McCluskey, M. D., & Haller, E. E. (2018). Dopants and defects in semiconductors. CRC press. DOI: https://doi.org/10.1201/b21986

Moezzi, A., Cortie, M., & McDonagh, A. (2016). Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide. Dalton Transactions, 45(17), 7385–7390. DOI: https://doi.org/10.1039/C5DT04864H

Musyarofah, M., Nurlaila, R., Muwwaqor, N. F., Saukani, M., Kuswoyo, A., & Pratapa, S. (2017). Phase study of SiO2-ZrO2 composites prepared from polymorphic combination of starting powders via a ball-milling followed by calcination. Journal of Physics: Conference Series, 817(1), 12033. DOI: https://doi.org/10.1088/1742-6596/817/1/012033

Nakate, U. T., Yu, Y.-T., & Park, S. (2022). Hydrothermal synthesis of ZnO nanoflakes composed of fine nanoparticles for H2S gas sensing application. Ceramics International, 48(19), 28822–28829. DOI: https://doi.org/10.1016/j.ceramint.2022.03.017

Nurlaila, R., Musyarofah, M., Muwwaqor, N. F., Triwikantoro, T., Kuswoyo, A., & Pratapa, S. (2017). Phase analysis of ZrO2-SiO2 systems synthesized through Ball milling mechanical activations. AIP Conference Proceedings, 1788(1). DOI: https://doi.org/10.1063/1.4968375

Pomeroy, M. (2021). Encyclopedia of materials: technical ceramics and glasses. Elsevier.

Raha, S., & Ahmaruzzaman, M. (2022). ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. Nanoscale Advances, 4(8), 1868–1925. DOI: https://doi.org/10.1039/D1NA00880C

Rajan, S., Venugopal, A., Kozhikkalathil, H., Valappil, S., Kale, M., Mann, M., Ahuja, P., & Munjal, S. (2023). Synthesis of ZnO nanoparticles by precipitation method: Characterizations and applications in decipherment of latent fingerprints. Materials Today: Proceedings. DOI: https://doi.org/10.1016/j.matpr.2023.05.680

Seid, E. T., & Dejene, F. B. (2020). Post-heat treatment effect on the properties of indium doped zinc oxide nanocrystals produced by the sol-gel method. Optical Materials Express, 10(11), 2849–2865. DOI: https://doi.org/10.1364/OME.400912

Septiana, A. R., Aditya, I., Musyarofah, M., & Shoodiqin, D. M. (2022). Green synthesis of zinc oxide nanocrystallite using eluetherine palmifolia extract. AIP Conference Proceedings, 2652(1). DOI: https://doi.org/10.1063/5.0106961

Sharma, D. K., Shukla, S., Sharma, K. K., & Kumar, V. (2022). A review on ZnO: Fundamental properties and applications. Materials Today: Proceedings, 49, 3028–3035. DOI: https://doi.org/10.1016/j.matpr.2020.10.238

Sulciute, A., Nishimura, K., Gilshtein, E., Cesano, F., Viscardi, G., Nasibulin, A. G., Ohno, Y., & Rackauskas, S. (2021). ZnO nanostructures application in electrochemistry: influence of morphology. The Journal of Physical Chemistry C, 125(2), 1472–1482. DOI: https://doi.org/10.1021/acs.jpcc.0c08459

Taglieri, G., Daniele, V., Maurizio, V., Merlin, G., Siligardi, C., Capron, M., & Mondelli, C. (2023). New Eco-Friendly and Low-Energy Synthesis to Produce ZnO Nanoparticles for Real-World Scale Applications. Nanomaterials, 13(17), 2458. DOI: https://doi.org/10.3390/nano13172458

Verma, R., Pathak, S., Srivastava, A. K., Prawer, S., & Tomljenovic-Hanic, S. (2021). ZnO nanomaterials: Green synthesis, toxicity evaluation and new insights in biomedical applications. Journal of Alloys and Compounds, 876, 160175. DOI: https://doi.org/10.1016/j.jallcom.2021.160175

Downloads

Published

2024-02-03

How to Cite

Nurhayati, N., Musyarofah, M., Rahastama, S., Shoodiqin, D. M., Prayitno, B., & Puspitasari, N. (2024). Study of The Effect of Calcination Temperature on the Phase Composition of ZnO Powder Synthesized via The Sol-Gel Method. JURNAL ILMU FISIKA | UNIVERSITAS ANDALAS, 16(1), 71–78. https://doi.org/10.25077/jif.16.1.71-78.2024

Issue

Section

Research Article

Citation Check