Analysis of Secondary Particles Produced by 50-500 MeV Muon and Water Interaction using PHITS Monte Carlo Package

Authors

  • Sitti Yani Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University Jalan Meranti Kampus IPB Dramaga, Bogor 16680, Indonesia
  • Dadan Hidayatuloh Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University Jalan Meranti Kampus IPB Dramaga, Bogor 16680, Indonesia
  • Tony Sumaryada Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University Jalan Meranti Kampus IPB Dramaga, Bogor 16680, Indonesia

DOI:

https://doi.org/10.25077/jif.16.1.63-70.2024

Keywords:

muon, muography, Monte Carlo, PHITS, neutron, photon

Abstract

Secondary particles will always be generated in particle-to-matter interactions. The interaction of muons with matter produces various secondary particles. In this study, secondary particles produced by the interaction between muons with energies of 5, 50, 100, 200 and 500 MeV with water were analyzed using the PHITS Monte Carlo package. The muon source is placed on the surface of water that has a thickness of 1 km. The muography technique was applied by placed a detector at a depth of 1 km from the source. This detector records the secondary particles produced by the interaction. The results obtained show that this interaction produces secondary particles in the form of photons and neutrons in the detector. The number and energy of these photons and neutrons are strongly influenced by the initial energy of the muon. Muons with the lowest energy of 5 MeV produce more secondary particles than any other energy by a factor of 10. Low-energy muons travel slowly, allowing more interactions to occur and increasing the number of secondary particles in the detector. The energies of neutrons and photons in the detector are at most 3.76 MeV and 5.3 MeV, respectively.

Downloads

Download data is not yet available.

References

Abe, S., & Sato, T. (2017). Implementation of muon interaction models in PHITS. Journal of Nuclear Science and Technology, 54(1), 101–110.

Aghara, S. K., Sriprisan, S. I., Singleterry, R. C., & Sato, T. (2015). Shielding evaluation for solar particle events using MCNPX, PHITS and OLTARIS codes. Life Sciences in Space Research, 4, 79–91.

Armour, E. A. G. (2010). Muon, positron and antiproton interactions with atoms and molecules. Journal of Physics: Conference Series, 225(1), 12002.

Barnoud, A., Cayol, V., Lelièvre, P. G., Portal, A., Labazuy, P., Boivin, P., & Gailler, L. (2021). Robust Bayesian joint inversion of gravimetric and muographic data for the density imaging of the Puy de Dôme Volcano (France). Frontiers in Earth Science, 8, 575842.

Danev, P., Adamczak, A., Bakalov, D., Mocchiutti, E., Stoilov, M., & Vacchi, A. (2016). Low-energy negative muon interaction with matter. Journal of Instrumentation, 11(03), P03019.

Das, S., Tripathy, S., Jagga, P., Bhattacharya, P., Majumdar, N., & Mukhopadhyay, S. (2022). Muography for Inspection of Civil Structures. Instruments, 6(4), 77.

Galgóczi, G., Mrdja, D., Bikit, I., Bikit, K., Slivka, J., Hansman, J., Oláh, L., Hamar, G., & Varga, D. (2020). Imaging by muons and their induced secondary particles—a novel technique. Journal of Instrumentation, 15(06), C06014.

Hamar, G., Surányi, G., Varga, D., Nyitrai, G., Oláh, L., Gera, Á., Balogh, S. J., & Barnaföldi, G. G. (2022). Underground muography with portable gaseous detectors. Journal of Physics: Conference Series, 2374(1), 12186.

Hansen, J. S., & Thompson, M. G. (1976). The electromagnetic interactions of cosmic ray muons in iron. Journal of Physics G: Nuclear Physics, 2(7), 523.

Hu, Y., Kuang, P., Li, C., Liu, F., Wu, haibiao, Xiao, D., Zhang, P., Wang, B., Cao, X., & Wei, L. (2023). Investigation of the muonic atoms distribution in materials through monic X-rays momentum simulation using Geant4. Physica Scripta.

Infantino, A., Blackmore, E. W., Brugger, M., Alía, R. G., Stukel, M., & Trinczek, M. (2016). FLUKA Monte Carlo assessment of the terrestrial muon flux at low energies and comparison against experimental measurements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 838, 109–116.

Jang, Y.-J., Kwon, N. H., Park, S. H., Choi, Y., Yu, H., Kim, K. B., Kim, D. W., & Choi, S. H. (2022). Activation evaluation of Siemens linear accelerator using Monte Carlo simulation. Journal of the Korean Physical Society, 81(11), 1107–1114.

Kaiser, R. (2019). Muography: overview and future directions. Philosophical Transactions of the Royal Society A, 377(2137), 20180049.

Kusagaya, T., & Tanaka, H. K. M. (2015). Muographic imaging with a multi-layered telescope and its application to the study of the subsurface structure of a volcano. Proceedings of the Japan Academy, Series B, 91(9), 501–510.

Mahon, D., Clarkson, A., Gardner, S., Ireland, D., Jebali, R., Kaiser, R., Ryan, M., Shearer, C., & Yang, G. (2019). First-of-a-kind muography for nuclear waste characterization. Philosophical Transactions of the Royal Society A, 377(2137), 20180048.

Morishima, K., Kuno, M., Nishio, A., Kitagawa, N., Manabe, Y., Moto, M., Takasaki, F., Fujii, H., Satoh, K., & Kodama, H. (2017). Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nature, 552(7685), 386–390.

Morris, C. L., Bacon, J., Borozdin, K., Fabritius, J., Miyadera, H., Perry, J., & Sugita, T. (2014). Horizontal cosmic ray muon radiography for imaging nuclear threats. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 330, 42–46.

Niita, K., Sato, T., Iwase, H., Nose, H., Nakashima, H., & Sihver, L. (2006). PHITS—a particle and heavy ion transport code system. Radiation Measurements, 41(9–10), 1080–1090.

Nishiyama, R., Taketa, A., Miyamoto, S., & Kasahara, K. (2016). Monte Carlo simulation for background study of geophysical inspection with cosmic-ray muons. Geophysical Journal International, 206(2), 1039–1050.

Oláh, L., Tanaka, H. K. M., Ohminato, T., & Varga, D. (2018). High-definition and low-noise muography of the Sakurajima volcano with gaseous tracking detectors. Scientific Reports, 8(1), 3207.

Pérez Prada, M., Barnes, S., & Stephan, M. (2022). Analysis of Secondary Particles as a Complement to Muon Scattering Measurements. Instruments, 6(4), 66.

Riggi, F. (2023). Interaction of Muons with Matter. In Messengers from the Cosmos: An Introduction to the Physics of Cosmic Rays in Its Historical Evolution (pp. 241–247). Springer.

Sakaki, Y., Namito, Y., Sanami, T., Iwase, H., & Hirayama, H. (2020). Implementation of muon pair production in PHITS and verification by comparing with the muon shielding experiment at SLAC. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 977, 164323.

Sato, T., Yasuda, H., Niita, K., Endo, A., & Sihver, L. (2008). Development of PARMA: PHITS-based analytical radiation model in the atmosphere. Radiation Research, 170(2), 244–259.

Vanini, S., Calvini, P., Checchia, P., Rigoni Garola, A., Klinger, J., Zumerle, G., Bonomi, G., Donzella, A., & Zenoni, A. (2019). Muography of different structures using muon scattering and absorption algorithms. Philosophical Transactions of the Royal Society A, 377(2137), 20180051.

Yani, S., Dirgayussa, I. G. E., Rhani, M. F., Soh, R. C. X., Haryanto, F., & Arif, I. (2016). Monte Carlo study on electron contamination and output factors of small field dosimetry in 6 MV photon beam. Smart Science, 4(2), 87–94.

Zhang, Z.-X., Enqvist, T., Holma, M., & Kuusiniemi, P. (2020). Muography and its potential applications to mining and rock engineering. Rock Mechanics and Rock Engineering, 1–15.

Downloads

Published

2024-02-03

How to Cite

Yani, S. ., Hidayatuloh, D. ., & Sumaryada, T. . (2024). Analysis of Secondary Particles Produced by 50-500 MeV Muon and Water Interaction using PHITS Monte Carlo Package . JURNAL ILMU FISIKA, 16(1), 63–70. https://doi.org/10.25077/jif.16.1.63-70.2024

Issue

Section

Research Article

Citation Check