Development of River Flow and Water Quality Using IOT-based Smart Buoys Environment Monitoring System

Authors

  • Subhan Fahmi Nasution Department of Physics, Universitas Andalas, Padang, 25163, Indonesia
  • Harmadi Harmadi Department of Physics, Universitas Andalas, Padang, 25163, Indonesia
  • Suryadi Suryadi Research Center for Photonics, National Research and Innovation Agency (BRIN), BJ.Habibie Science and Tecnology Park, Banten, 15314, Indonesia
  • Bambang Widiyatmoko Research Center for Photonics, National Research and Innovation Agency (BRIN), BJ.Habibie Science and Tecnology Park, Banten, 15314, Indonesia

DOI:

https://doi.org/10.25077/jif.16.1.1-12.2024

Keywords:

Internet of Things, River flow, Water quality, ESP32, GPS

Abstract

Efficient and accurate river water quality monitoring is needed to support laboratory testing based on on-site sampling. Therefore, we have developed a monitoring system for river flow and water quality using sensor-equipped buoys and the Internet of Things (IoT) concept. An ESP32 NodeMCU microcontroller integrated with WiFi and compatible with Arduino IDE is used in the system. The buoy is equipped with GPS to determine the position and flow speed and sensors to measure water quality parameters of pH and temperature. Data on position, flow velocity, and water quality parameters are transmitted over a WiFi network using the MQTT protocol. The data is recorded by the buoy and uploaded and displayed on the adafruit.io platform. Positioning was done by comparing the values displayed on the Neo-6M GPS with the Maps application on the smartphone. The results show that the GPS coordinate values are accurate. The water quality parameter values obtained have an error rate of 3.3% for the pH sensor and 1.02% for the temperature sensor. Thus, the system we have developed has the potential to be used as a substitute for field sampling-based river water quality monitoring systems.

Downloads

Download data is not yet available.

Author Biography

Suryadi Suryadi, Research Center for Photonics, National Research and Innovation Agency (BRIN), BJ.Habibie Science and Tecnology Park, Banten, 15314

Photonics and Instrumentation Research Center

References

Abubaker, A., Thomas, T., & Begum, S. (2018). Testing Water Quality by an efficient MQTT algorithm using an IOT approach. International Journal of Scientific & Engineering Research, 9(4), 64–67.

Adeyemi, O., Grove, I., Peets, S., Domun, Y., & Norton, T. (2018). Dynamic modelling of lettuce transpiration for water status monitoring. Computers and Electronics in Agriculture, 155(September), 50–57. https://doi.org/10.1016/j.compag.2018.10.008

Ajith Jerom, B., & Manimegalai, R. (2020). An IoT Based Smart Water Quality Monitoring System using Cloud. International Conference on Emerging Trends in Information Technology and Engineering, Ic-ETITE 2020, 1–7. https://doi.org/10.1109/ic-ETITE47903.2020.450

Akbar dkk, S. Al. (2019). Online Monitoring Kualitas Air Waduk Berbasis Thingspeak. Tranmisi Undip, 21(4), 109–115.

Asha’ari, M. I., & Ibrahim, A. I. (2022). Wireless Water Quality Monitoring System. 2022 IEEE 9th International Conference on Underwater System Technology: Theory and Applications, USYS 2022, 1–8. https://doi.org/10.1109/USYS56283.2022.10072669

Damayanti, A. A., Wahjono, H. D., & Santoso, A. D. (2022). Pemantauan Kualitas Air Secara Online dan Analisis Status Mutu Air di Danau Toba, Sumatera Utara. Jurnal Sumberdaya Alam Dan Lingkungan, 9(3), 113–120. https://doi.org/10.21776/ub.jsal.2022.009.03.4

Daskalakis, S. N., Goussetis, G., Assimonis, S. D., Tentzeris, M. M., & Georgiadis, A. (2018). A uW Backscatter-Morse-Leaf Sensor for Low-Power Agricultural Wireless Sensor Networks. IEEE Sensors Journal, 18(19), 7889–7898. https://doi.org/10.1109/JSEN.2018.2861431

Fang, S., Xu, L. Da, Zhu, Y., Ahati, J., Pei, H., Yan, J., & Liu, Z. (2014). An integrated system for regional environmental monitoring and management based on internet of things. IEEE Transactions on Industrial Informatics, 10(2), 1596–1605. https://doi.org/10.1109/TII.2014.2302638

Gokulanathan, S. (2019). A GSM Based Water Quality Monitoring System using Arduino. Shanlax International Journal of Arts, Science and Humanities, 6(4), 22–26.

Herschy, R. W. (2012). Water quality for drinking: WHO guidelines. In Encyclopedia of Earth Sciences Series (pp. 876–883). https://doi.org/10.1007/978-1-4020-4410-6_184

Masykur, H.Z., Amin, B., Jasril, J., & Siregar, S. H. (2018). Analisis Status Mutu Air Sungai Berdasarkan Metode STORET Sebagai Pengendalian Kualitas Lingkungan (Studi Kasus: Dua Aliran Sungai di Kecamatan Tembilahan Hulu, Kabupaten Indragiri Hilir, Riau). Dinamika Lingkungan Indonesia, 5(2), 84. https://doi.org/10.31258/dli.5.2.p.84-96

Jacob, F. (2010). Modern Sensors. In Springer (4th ed., Vol. 6, Issue August). Springer New York Heidelberg Dordrecht London. https://doi.org/10.1007/978-1-4419-6466-3

Jan, F., Min-Allah, N., & Düştegör, D. (2021). Iot based smart water quality monitoring: Recent techniques, trends and challenges for domestic applications. Water (Switzerland), 13(13), 1–37. https://doi.org/10.3390/w13131729

Jones, L. D. (1995). Electronic Instruments and Measurements (Second). Prentice-Hall International Editions. https://doi.org/10.1038/166222a0

Kelly, S. D. T., Suryadevara, N. K., & Mukhopadhyay, S. C. (2013). Towards the implementation of IoT for environmental condition monitoring in homes. IEEE Sensors Journal, 13(10), 3846–3853. https://doi.org/10.1109/JSEN.2013.2263379

Kementerian Lingkungan Hidup dan Kehutanan Republik Indonesia. (2017). Petunjuk Teknis Restorasi Kualitas Air Sungai (Issue 021). http://ppkl.menlhk.go.id/website/filebox/270/180530101715Petunjuk Teknis Restorasi Kualitas Air Sungai.pdf

Kirkup, L. (2019). Experimental Methods for Science and Engineering Students: An Introduction to the Analysis and Presentation of Data. In Experimental Methods for Science and Engineering Students: An Introduction to the Analysis and Presentation of Data. https://doi.org/10.1017/9781108290104

Lakshmikantha, V., Hiriyannagowda, A., Manjunath, A., Patted, A., Basavaiah, J., & Anthony, A. A. (2021). IoT based smart water quality monitoring system. Global Transitions Proceedings, 2(2), 181–186. https://doi.org/10.1016/j.gltp.2021.08.062

Menteri Kesehatan Republik Indonesia. (2017). Peraturan Menteri Kesehatan Republik Indonesia Nomor 32 Tahun 2017 Tentang Standar Baku Mutu Kesehatan Lingkungan Dan Persyaratan Kesehatan Air Untuk Keperluan Higiene Sanitasi, Kolam Renang, Solus Per Aqua dan Pemandian Umum. In Peraturan Menteri kesehatan Republik Indonesia (pp. 1–20).

Moreno, C., Aquino, R., Ibarreche, J., Pérez, I., Castellanos, E., Álvarez, E., Rentería, R., Anguiano, L., Edwards, A., Lepper, P., Edwards, R. M., & Clark, B. (2019). Rivercore: IoT device for river water level monitoring over cellular communications. Sensors, 19(1), 2–5. https://doi.org/10.3390/s19010127

Park, J., Kim, K. T., & Lee, W. H. (2020). Recent advances in information and communications technology (ICT) and sensor technology for monitoring water quality. Water (Switzerland), 12(2). https://doi.org/10.3390/w12020510

Pasika, S., & Gandla, S. T. (2020). Smart water quality monitoring system with cost-effective using IoT. Heliyon, 6(7), e04096. https://doi.org/10.1016/j.heliyon.2020.e04096

Pemerintah Republik Indonesia. (2011). Peraturan Pemerintah Republik Indonesia Nomor 38 Tahun 2011 tentang Sungai. In Peraturan Pemerintah Republik Indonesia Nomor 38 Tahun 2011 tentang Sungai. (p. 24). https://www.hukumonline.com/pusatdata/detail/v2/lt4e4241b91b57a/peraturan-pemerintah-nomor-38-tahun-2011

Putro, E. Y., & Suryono. (2017). Rancang bangun sistem sensor nirkabel untuk memantau kecepatan dan arah aliran. Youngster Physics Journal, 6(1), 32–39.

Roshidi, H., & Thirunavakkarasu, P. (2021). The Development of Water Quality Monitoring System at Dam. Journal of Engineering Technology, 9(1), 82–85.

Rufiyanto, A., Abdilah, G. S., & Purwaningrum, S. D. (2020). Rancang Bangun Sistem Pengukuran pH dan Kekeruhan Air Berbasis Mikrokontroller Atmega 328. Jurnal Neo Teknika, 6(1), 8–17.

Soeboer, D. A., Iskandar, B. H., Jaya, I., Imron, M., Psp-fpik-ipb, P. T., Psp-fpik-ipb, D., & Itk-fpik-ipb, D. (2018). Design and Construction of The Buoy for Detecting Surface Current Movement Using GPS. Albacore, 2(3), 263–277.

Vijayakumar, N., & Ramya, R. (2015). The real time monitoring of water quality in IoT environment. ICIIECS 2015 - 2015 IEEE International Conference on Innovations in Information, Embedded and Communication Systems, 1–5. https://doi.org/10.1109/ICIIECS.2015.7193080

Widja, I. B. P. (2018). Sistem IoT Berbasis Protokol MQTT Dengan Mikrokontroler ESP8266 dan ESP32. SNATIF-Fakultas Teknik Universitas Muria Kudus, 329–336.

Yaroshenko, I., Kirsanov, D., Marjanovic, M., Lieberzeit, P. A., Korostynska, O., Mason, A., Frau, I., & Legin, A. (2020). Real-time water quality monitoring with chemical sensors. Sensors (Switzerland), 20(12), 1–22. https://doi.org/10.3390/s20123432

Yuan, Y., Feng, S., Alahi, M. E. E., Nag, A., Afsarimanesh, N., Zhang, H., & He, S. (2018). Development of an internet of things based electrochemical microfluidic system for free calcium detection. Applied Sciences, 8(8). https://doi.org/10.3390/app8081357

Downloads

Published

2023-09-22

How to Cite

Nasution, S. F., Harmadi, H. ., Suryadi, S., & Widiyatmoko, B. . (2023). Development of River Flow and Water Quality Using IOT-based Smart Buoys Environment Monitoring System . JURNAL ILMU FISIKA, 16(1), 1–12. https://doi.org/10.25077/jif.16.1.1-12.2024

Issue

Section

Research Article

Citation Check