Efficiency at Maximum Power of Endoreversible Quantum Otto Engine with Partial Thermalization in 3D Harmonic Potential

Authors

  • Zahara Zettira Theoretical Physics Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Kampus Unand Limau Manis, Padang 25163, Indonesia
  • Trengginas Eka Putra Sutantyo Theoretical Physics Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Kampus Unand Limau Manis, Padang 25163, Indonesia https://orcid.org/0000-0002-7633-909X
  • Zulfi Abdullah Theoretical Physics Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Kampus Unand Limau Manis, Padang 25163, Indonesia https://orcid.org/0000-0002-8052-0836

DOI:

https://doi.org/10.25077/jif.16.1.22-33.2024

Keywords:

Partial thermalization, Bose-Einstein Condensate, Quantum Otto Engine, Efficiency of maximum power, Entropy production

Abstract

We study the partial thermalization to the effect of efficiency at maximum power (EMP) of a quantum Otto engine using Bose-Einstein Condensation in 3D harmonic potential. Partial thermalization occurs at a finite-time isochoric process, preventing the medium from achieving equilibrium with reservoirs, leaving it in a state of residual coherence. Under these circumstances, the performance of the engine can be seen from its power and EMP. The 3D harmonic potential is used to generate an excitation of energy during the expansion and compression. The total energy is defined by the total work done in a cycle. Using Fourier’s law in conduction, we found that power explicitly depends on the duration of heating and cooling stroke time and efficiency of the engine; that is the higher stroke time and efficiency, the less power output. In order to find EMP, we maximize power with respect to compression ratio κ, and we found that EMP also depends on the isochoric heating and cooling process. By varying the stroke time of the isochoric process, EMP slightly decreases with increasing isochoric time due to entropy production. However, adjusting cooling stroke time more extended than heating stroke time could significantly improve the EMP of Otto Engine.

Downloads

Download data is not yet available.

Author Biography

Trengginas Eka Putra Sutantyo, Theoretical Physics Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Kampus Unand Limau Manis, Padang 25163

 

 

Department of Physics, Andalas University, Padang, Indonesia  

References

Abah, O., Roßnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., & Lutz, E. (2012). Single-ion heat engine at maximum power. Physical Review Letters, 109(20). https://doi.org/10.1103/PhysRevLett.109.203006 DOI: https://doi.org/10.1103/PhysRevLett.109.203006

Altintas, F. (2019). Comparison of the coupled quantum Carnot and Otto cycles. Physica A: Statistical Mechanics and Its Applications, 523, 40–47. https://doi.org/10.1016/j.physa.2019.01.144 DOI: https://doi.org/10.1016/j.physa.2019.01.144

Aveline, D. C., Williams, J. R., Elliott, E. R., Dutenhoffer, C., Kellogg, J. R., Kohel, J. M., Lay, N. E., Oudrhiri, K., Shotwell, R. F., Yu, N., & Thompson, R. J. (2020). Observation of Bose–Einstein condensates in an Earth-orbiting research lab. Nature, 582(7811), 193–197. https://doi.org/10.1038/s41586-020-2346-1 DOI: https://doi.org/10.1038/s41586-020-2346-1

Belfaqih, I. H., Sutantyo, T. E. P., Prayitno, T. B., & Sulaksono, A. (2015). Quantum-Carnot engine for particle confined to 2D symmetric potential well. AIP Conference Proceedings, 1677 (1), 040010. https://doi.org/10.1063/1.4930654 DOI: https://doi.org/10.1063/1.4930654

Boubakour, M., Fogarty, T., & Busch, T. (2022). Interaction enhanced quantum heat engine. http://arxiv.org/abs/2211.03394 DOI: https://doi.org/10.1103/PhysRevResearch.5.013088

Çakmak, B., & Müstecaplloǧlu, Ö. E. (2019). Spin quantum heat engines with shortcuts to adiabaticity. Physical Review E, 99(3), 1–10. https://doi.org/10.1103/PhysRevE.99.032108 DOI: https://doi.org/10.1103/PhysRevE.99.032108

Çakmak, S., Altintas, F., Gençten, A., & Müstecaplıoğlu, Ö. E. (2017). Irreversible work and internal friction in a quantum Otto cycle of a single arbitrary spin. European Physical Journal D, 71(3), 1–10. https://doi.org/10.1140/epjd/e2017-70443-1 DOI: https://doi.org/10.1140/epjd/e2017-70443-1

Camati, P. A., Santos, J. F. G., & Serra, R. M. (2019). Coherence effects in the performance of the quantum Otto heat engine. Physical Review A, 99(6), 40–43. https://doi.org/10.1103/PhysRevA.99.062103 DOI: https://doi.org/10.1103/PhysRevA.99.062103

Chand, S., Dasgupta, S., & Biswas, A. (2021). Finite-time performance of a single-ion quantum Otto engine. Physical Review E, 103(3), 1–9. https://doi.org/10.1103/PhysRevE.103.032144 DOI: https://doi.org/10.1103/PhysRevE.103.032144

Curzon, F. L., & Ahlborn, B. (1975). Efficiency of a Carnot engine at maximum power output. American Journal of Physics, 43(1), 22–24. https://doi.org/10.1119/1.10023 DOI: https://doi.org/10.1119/1.10023

Dann, R., & Kosloff, R. (2020). Quantum signatures in the quantum Carnot cycle. New Journal of Physics, 22(1). https://doi.org/10.1088/1367-2630/ab6876 DOI: https://doi.org/10.1088/1367-2630/ab6876

Deffner, S. (2018). Efficiency of harmonic quantum Otto engines at maximum power. Entropy, 20(11). https://doi.org/10.3390/e20110875 DOI: https://doi.org/10.3390/e20110875

Deffner, S., & Campbell, S. (2019). Quantum Thermodynamics. Morgan & Claypool Publishers. https://doi.org/10.1088/2053-2571/ab21c6 DOI: https://doi.org/10.1088/2053-2571/ab21c6

Donley, E. A., Claussen, N. R., Thompson, S. T., & Wieman, C. E. (2008). Atom-molecule coherence in a bose-einstein condensate. Collected Papers of Carl Wieman, 621–625. https://doi.org/10.1142/9789812813787_0085 DOI: https://doi.org/10.1142/9789812813787_0085

Fahriza, A., & Sutantyo, T. E. P. (2022). Effects of State Degeneration in 3D Quantum Lenoir Engine Performance. Jurnal Ilmu Fisika | Universitas Andalas, 14(2), 95–107. https://doi.org/10.25077/jif.14.2.95-107.2022 DOI: https://doi.org/10.25077/jif.14.2.95-107.2022

Fahriza, A., Sutantyo, T. E. P., & Abdullah, Z. (2022). Optimizations of multilevel quantum engine with N noninteracting fermions based on Lenoir cycle. European Physical Journal Plus, 137(9). https://doi.org/10.1140/epjp/s13360-022-03235-z DOI: https://doi.org/10.1140/epjp/s13360-022-03235-z

Fei, Z., Chen, J. F., & Ma, Y. H. (2022). Efficiency statistics of a quantum Otto cycle. Physical Review A, 105(2). https://doi.org/10.1103/PhysRevA.105.022609 DOI: https://doi.org/10.1103/PhysRevA.105.022609

Griffiths, D. J., & Schroeter, D. F. (2018). Introduction to Quantum Mechanics. Cambridge University Press. https://doi.org/10.1017/9781316995433 DOI: https://doi.org/10.1017/9781316995433

Jiao, G., Zhu, S., He, J., Ma, Y., & Wang, J. (2021). Fluctuations in irreversible quantum Otto engines. Physical Review E, 103(3), 1–9. https://doi.org/10.1103/PhysRevE.103.032130 DOI: https://doi.org/10.1103/PhysRevE.103.032130

Kaushik, S. C., & Kumar, S. (2000). Finite time thermodynamic analysis of endoreversible stirling heat engine with regenerative losses. Energy, 25(10). https://doi.org/10.1016/S0360-5442(00)00023-2 DOI: https://doi.org/10.1016/S0360-5442(00)00023-2

Kim, J., Oh, S., Yang, D., Kim, J., Lee, M., & An, K. (2022). A photonic quantum engine driven by superradiance. Nature Photonics, 16(10), 707–711. https://doi.org/10.1038/s41566-022-01039-2 DOI: https://doi.org/10.1038/s41566-022-01039-2

Kosloff, R., & Rezek, Y. (2017). The Quantum Harmonic Otto Cycle. Entropy, 19(4), 136. https://doi.org/10.3390/e19040136 DOI: https://doi.org/10.3390/e19040136

Meng, Z., Chen, L., & Wu, F. (2020). Optimal power and efficiency of multi-stage endoreversible quantum carnot heat engine with harmonic oscillators at the classical limit. Entropy, 22(4). https://doi.org/10.3390/E22040457 DOI: https://doi.org/10.3390/e22040457

Myers, N. M., Abah, O., & Deffner, S. (2022). Quantum thermodynamic devices: from theoretical proposals to experimental reality. https://doi.org/10.1116/5.0083192 DOI: https://doi.org/10.1116/5.0083192

Myers, N. M., & Deffner, S. (2020). Bosons outperform fermions: The thermodynamic advantage of symmetry. Physical Review E, 101(1). https://doi.org/10.1103/PhysRevE.101.012110 DOI: https://doi.org/10.1103/PhysRevE.101.012110

Myers, N. M., Peña, F. J., Negrete, O., Vargas, P., De Chiara, G., & Deffner, S. (2022). Boosting engine performance with Bose-Einstein condensation. New Journal of Physics, 24(2). https://doi.org/10.1088/1367-2630/ac47cc DOI: https://doi.org/10.1088/1367-2630/ac47cc

Niedenzu, W., Mukherjee, V., Ghosh, A., Kofman, A. G., & Kurizki, G. (2018). Quantum engine efficiency bound beyond the second law of thermodynamics. Nature Communications, 9(1). https://doi.org/10.1038/s41467-017-01991-6 DOI: https://doi.org/10.1038/s41467-017-01991-6

Pathria, R. K., & Beale, P. D. (2011). Statistical Mechanics. In Statistical Mechanics. https://doi.org/10.1016/C2009-0-62310-2 DOI: https://doi.org/10.1016/C2009-0-62310-2

Peña, F. J., Myers, N. M., Órdenes, D., Albarrán-Arriagada, F., & Vargas, P. (2023). Enhanced Efficiency at Maximum Power in a Fock–Darwin Model Quantum Dot Engine. Entropy, 25(3), 518. https://doi.org/10.3390/e25030518 DOI: https://doi.org/10.3390/e25030518

Pitaevskii, Lev, and S. S. (2016). Bose-Einstein condensation and superfluidity. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780198758884.001.0001

Reppy, J. D., Crooker, B. C., Hebral, B., Corwin, A. D., He, J., & Zassenhaus, G. M. (2000). Density dependence of the transition temperature in a homogeneous bose-einstein condensate. Physical Review Letters, 84(10), 2060–2063. https://doi.org/10.1103/PhysRevLett.84.2060 DOI: https://doi.org/10.1103/PhysRevLett.84.2060

Scovil, H. E. D., & Schulz-Dubois, E. O. (1959). Three-level masers as heat engines. Physical Review Letters, 2(6), 262–263. https://doi.org/10.1103/PhysRevLett.2.262 DOI: https://doi.org/10.1103/PhysRevLett.2.262

Scully, M. O., Suhail Zubairy, M., Agarwal, G. S., & Walther, H. (2003). Extracting work from a single heat bath via vanishing quantum coherence. Science, 299(5608). https://doi.org/10.1126/science.1078955 DOI: https://doi.org/10.1126/science.1078955

Shen, X., Chen, L., Ge, Y., & Sun, F. (2017). International Journal of Energy And Environment Finite-time thermodynamic analysis for endoreversible Lenoir cycle coupled to constant-temperature heat reservoirs. Journal Homepage: Www.IJEE.IEEFoundation.Org ISSN, 8(3), 2076–2909. www.IJEE.IEEFoundation.org

Smith, Z., Pal, P. S., & Deffner, S. (2020). Endoreversible Otto Engines at Maximum Power. Journal of Non-Equilibrium Thermodynamics, 45(3), 305–310. https://doi.org/10.1515/jnet-2020-0039 DOI: https://doi.org/10.1515/jnet-2020-0039

Sutantyo, T. E. P. (2020). Three-State Quantum Heat Engine Based on Carnot Cycle. Jurnal Fisika Unand, 9(1), 142–149. https://doi.org/10.25077/jfu.9.1.142-149.2020 DOI: https://doi.org/10.25077/jfu.9.1.142-149.2020

Sutantyo, T. E. P., Belfaqih, I. H., & Prayitno, T. B. (2015). Quantum-Carnot engine for particle confined to cubic potential. AIP Conference Proceedings, 1677 (1), 040011. https://doi.org/10.1063/1.4930655 DOI: https://doi.org/10.1063/1.4930655

Wang, R., Chen, L., Ge, Y., & Feng, H. (2021). Optimizing power and thermal efficiency of an irreversible variable-temperature heat reservoir lenoir cycle. Applied Sciences (Switzerland), 11(15). https://doi.org/10.3390/app11157171 DOI: https://doi.org/10.3390/app11157171

Yin, Y., Chen, L., Wu, F., & Ge, Y. (2020). Work output and thermal efficiency of an endoreversible entangled quantum Stirling engine with one dimensional isotropic Heisenberg model. Physica A: Statistical Mechanics and Its Applications, 547, 123856. https://doi.org/10.1016/j.physa.2019.123856 DOI: https://doi.org/10.1016/j.physa.2019.123856

Zettili, N., & Zahed, I. (2003). Quantum Mechanics: Concepts and Applications. American Journal of Physics, 71(1), 93–93. https://doi.org/10.1119/1.1522702 DOI: https://doi.org/10.1119/1.1522702

Zettira, Z., Fahriza, A., Abdullah, Z., & Sutantyo, T. E. P. (2023). Enhancing Quantum Otto Engine Performance in Generalized External Potential on Bose-Einstein Condensation Regime. 1–14. http://arxiv.org/abs/2307.01805

Downloads

Published

2023-09-22

How to Cite

Zettira, Z., Sutantyo, T. E. P., & Abdullah, Z. (2023). Efficiency at Maximum Power of Endoreversible Quantum Otto Engine with Partial Thermalization in 3D Harmonic Potential. JURNAL ILMU FISIKA | UNIVERSITAS ANDALAS, 16(1), 22–33. https://doi.org/10.25077/jif.16.1.22-33.2024

Issue

Section

Research Article

Citation Check