Efficiency at Maximum Power of Endoreversible Quantum Otto Engine with Partial Thermalization in 3D Harmonic Potential
DOI:
https://doi.org/10.25077/jif.16.1.22-33.2024Keywords:
Partial thermalization, Bose-Einstein Condensate, Quantum Otto Engine, Efficiency of maximum power, Entropy productionAbstract
We study the partial thermalization to the effect of efficiency at maximum power (EMP) of a quantum Otto engine using Bose-Einstein Condensation in 3D harmonic potential. Partial thermalization occurs at a finite-time isochoric process, preventing the medium from achieving equilibrium with reservoirs, leaving it in a state of residual coherence. Under these circumstances, the performance of the engine can be seen from its power and EMP. The 3D harmonic potential is used to generate an excitation of energy during the expansion and compression. The total energy is defined by the total work done in a cycle. Using Fourier’s law in conduction, we found that power explicitly depends on the duration of heating and cooling stroke time and efficiency of the engine; that is the higher stroke time and efficiency, the less power output. In order to find EMP, we maximize power with respect to compression ratio κ, and we found that EMP also depends on the isochoric heating and cooling process. By varying the stroke time of the isochoric process, EMP slightly decreases with increasing isochoric time due to entropy production. However, adjusting cooling stroke time more extended than heating stroke time could significantly improve the EMP of Otto Engine.
Downloads
References
Abah, O., Roßnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., & Lutz, E. (2012). Single-ion heat engine at maximum power. Physical Review Letters, 109(20). https://doi.org/10.1103/PhysRevLett.109.203006 DOI: https://doi.org/10.1103/PhysRevLett.109.203006
Altintas, F. (2019). Comparison of the coupled quantum Carnot and Otto cycles. Physica A: Statistical Mechanics and Its Applications, 523, 40–47. https://doi.org/10.1016/j.physa.2019.01.144 DOI: https://doi.org/10.1016/j.physa.2019.01.144
Aveline, D. C., Williams, J. R., Elliott, E. R., Dutenhoffer, C., Kellogg, J. R., Kohel, J. M., Lay, N. E., Oudrhiri, K., Shotwell, R. F., Yu, N., & Thompson, R. J. (2020). Observation of Bose–Einstein condensates in an Earth-orbiting research lab. Nature, 582(7811), 193–197. https://doi.org/10.1038/s41586-020-2346-1 DOI: https://doi.org/10.1038/s41586-020-2346-1
Belfaqih, I. H., Sutantyo, T. E. P., Prayitno, T. B., & Sulaksono, A. (2015). Quantum-Carnot engine for particle confined to 2D symmetric potential well. AIP Conference Proceedings, 1677 (1), 040010. https://doi.org/10.1063/1.4930654 DOI: https://doi.org/10.1063/1.4930654
Boubakour, M., Fogarty, T., & Busch, T. (2022). Interaction enhanced quantum heat engine. http://arxiv.org/abs/2211.03394 DOI: https://doi.org/10.1103/PhysRevResearch.5.013088
Çakmak, B., & Müstecaplloǧlu, Ö. E. (2019). Spin quantum heat engines with shortcuts to adiabaticity. Physical Review E, 99(3), 1–10. https://doi.org/10.1103/PhysRevE.99.032108 DOI: https://doi.org/10.1103/PhysRevE.99.032108
Çakmak, S., Altintas, F., Gençten, A., & Müstecaplıoğlu, Ö. E. (2017). Irreversible work and internal friction in a quantum Otto cycle of a single arbitrary spin. European Physical Journal D, 71(3), 1–10. https://doi.org/10.1140/epjd/e2017-70443-1 DOI: https://doi.org/10.1140/epjd/e2017-70443-1
Camati, P. A., Santos, J. F. G., & Serra, R. M. (2019). Coherence effects in the performance of the quantum Otto heat engine. Physical Review A, 99(6), 40–43. https://doi.org/10.1103/PhysRevA.99.062103 DOI: https://doi.org/10.1103/PhysRevA.99.062103
Chand, S., Dasgupta, S., & Biswas, A. (2021). Finite-time performance of a single-ion quantum Otto engine. Physical Review E, 103(3), 1–9. https://doi.org/10.1103/PhysRevE.103.032144 DOI: https://doi.org/10.1103/PhysRevE.103.032144
Curzon, F. L., & Ahlborn, B. (1975). Efficiency of a Carnot engine at maximum power output. American Journal of Physics, 43(1), 22–24. https://doi.org/10.1119/1.10023 DOI: https://doi.org/10.1119/1.10023
Dann, R., & Kosloff, R. (2020). Quantum signatures in the quantum Carnot cycle. New Journal of Physics, 22(1). https://doi.org/10.1088/1367-2630/ab6876 DOI: https://doi.org/10.1088/1367-2630/ab6876
Deffner, S. (2018). Efficiency of harmonic quantum Otto engines at maximum power. Entropy, 20(11). https://doi.org/10.3390/e20110875 DOI: https://doi.org/10.3390/e20110875
Deffner, S., & Campbell, S. (2019). Quantum Thermodynamics. Morgan & Claypool Publishers. https://doi.org/10.1088/2053-2571/ab21c6 DOI: https://doi.org/10.1088/2053-2571/ab21c6
Donley, E. A., Claussen, N. R., Thompson, S. T., & Wieman, C. E. (2008). Atom-molecule coherence in a bose-einstein condensate. Collected Papers of Carl Wieman, 621–625. https://doi.org/10.1142/9789812813787_0085 DOI: https://doi.org/10.1142/9789812813787_0085
Fahriza, A., & Sutantyo, T. E. P. (2022). Effects of State Degeneration in 3D Quantum Lenoir Engine Performance. Jurnal Ilmu Fisika | Universitas Andalas, 14(2), 95–107. https://doi.org/10.25077/jif.14.2.95-107.2022 DOI: https://doi.org/10.25077/jif.14.2.95-107.2022
Fahriza, A., Sutantyo, T. E. P., & Abdullah, Z. (2022). Optimizations of multilevel quantum engine with N noninteracting fermions based on Lenoir cycle. European Physical Journal Plus, 137(9). https://doi.org/10.1140/epjp/s13360-022-03235-z DOI: https://doi.org/10.1140/epjp/s13360-022-03235-z
Fei, Z., Chen, J. F., & Ma, Y. H. (2022). Efficiency statistics of a quantum Otto cycle. Physical Review A, 105(2). https://doi.org/10.1103/PhysRevA.105.022609 DOI: https://doi.org/10.1103/PhysRevA.105.022609
Griffiths, D. J., & Schroeter, D. F. (2018). Introduction to Quantum Mechanics. Cambridge University Press. https://doi.org/10.1017/9781316995433 DOI: https://doi.org/10.1017/9781316995433
Jiao, G., Zhu, S., He, J., Ma, Y., & Wang, J. (2021). Fluctuations in irreversible quantum Otto engines. Physical Review E, 103(3), 1–9. https://doi.org/10.1103/PhysRevE.103.032130 DOI: https://doi.org/10.1103/PhysRevE.103.032130
Kaushik, S. C., & Kumar, S. (2000). Finite time thermodynamic analysis of endoreversible stirling heat engine with regenerative losses. Energy, 25(10). https://doi.org/10.1016/S0360-5442(00)00023-2 DOI: https://doi.org/10.1016/S0360-5442(00)00023-2
Kim, J., Oh, S., Yang, D., Kim, J., Lee, M., & An, K. (2022). A photonic quantum engine driven by superradiance. Nature Photonics, 16(10), 707–711. https://doi.org/10.1038/s41566-022-01039-2 DOI: https://doi.org/10.1038/s41566-022-01039-2
Kosloff, R., & Rezek, Y. (2017). The Quantum Harmonic Otto Cycle. Entropy, 19(4), 136. https://doi.org/10.3390/e19040136 DOI: https://doi.org/10.3390/e19040136
Meng, Z., Chen, L., & Wu, F. (2020). Optimal power and efficiency of multi-stage endoreversible quantum carnot heat engine with harmonic oscillators at the classical limit. Entropy, 22(4). https://doi.org/10.3390/E22040457 DOI: https://doi.org/10.3390/e22040457
Myers, N. M., Abah, O., & Deffner, S. (2022). Quantum thermodynamic devices: from theoretical proposals to experimental reality. https://doi.org/10.1116/5.0083192 DOI: https://doi.org/10.1116/5.0083192
Myers, N. M., & Deffner, S. (2020). Bosons outperform fermions: The thermodynamic advantage of symmetry. Physical Review E, 101(1). https://doi.org/10.1103/PhysRevE.101.012110 DOI: https://doi.org/10.1103/PhysRevE.101.012110
Myers, N. M., Peña, F. J., Negrete, O., Vargas, P., De Chiara, G., & Deffner, S. (2022). Boosting engine performance with Bose-Einstein condensation. New Journal of Physics, 24(2). https://doi.org/10.1088/1367-2630/ac47cc DOI: https://doi.org/10.1088/1367-2630/ac47cc
Niedenzu, W., Mukherjee, V., Ghosh, A., Kofman, A. G., & Kurizki, G. (2018). Quantum engine efficiency bound beyond the second law of thermodynamics. Nature Communications, 9(1). https://doi.org/10.1038/s41467-017-01991-6 DOI: https://doi.org/10.1038/s41467-017-01991-6
Pathria, R. K., & Beale, P. D. (2011). Statistical Mechanics. In Statistical Mechanics. https://doi.org/10.1016/C2009-0-62310-2 DOI: https://doi.org/10.1016/C2009-0-62310-2
Peña, F. J., Myers, N. M., Órdenes, D., Albarrán-Arriagada, F., & Vargas, P. (2023). Enhanced Efficiency at Maximum Power in a Fock–Darwin Model Quantum Dot Engine. Entropy, 25(3), 518. https://doi.org/10.3390/e25030518 DOI: https://doi.org/10.3390/e25030518
Pitaevskii, Lev, and S. S. (2016). Bose-Einstein condensation and superfluidity. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780198758884.001.0001
Reppy, J. D., Crooker, B. C., Hebral, B., Corwin, A. D., He, J., & Zassenhaus, G. M. (2000). Density dependence of the transition temperature in a homogeneous bose-einstein condensate. Physical Review Letters, 84(10), 2060–2063. https://doi.org/10.1103/PhysRevLett.84.2060 DOI: https://doi.org/10.1103/PhysRevLett.84.2060
Scovil, H. E. D., & Schulz-Dubois, E. O. (1959). Three-level masers as heat engines. Physical Review Letters, 2(6), 262–263. https://doi.org/10.1103/PhysRevLett.2.262 DOI: https://doi.org/10.1103/PhysRevLett.2.262
Scully, M. O., Suhail Zubairy, M., Agarwal, G. S., & Walther, H. (2003). Extracting work from a single heat bath via vanishing quantum coherence. Science, 299(5608). https://doi.org/10.1126/science.1078955 DOI: https://doi.org/10.1126/science.1078955
Shen, X., Chen, L., Ge, Y., & Sun, F. (2017). International Journal of Energy And Environment Finite-time thermodynamic analysis for endoreversible Lenoir cycle coupled to constant-temperature heat reservoirs. Journal Homepage: Www.IJEE.IEEFoundation.Org ISSN, 8(3), 2076–2909. www.IJEE.IEEFoundation.org
Smith, Z., Pal, P. S., & Deffner, S. (2020). Endoreversible Otto Engines at Maximum Power. Journal of Non-Equilibrium Thermodynamics, 45(3), 305–310. https://doi.org/10.1515/jnet-2020-0039 DOI: https://doi.org/10.1515/jnet-2020-0039
Sutantyo, T. E. P. (2020). Three-State Quantum Heat Engine Based on Carnot Cycle. Jurnal Fisika Unand, 9(1), 142–149. https://doi.org/10.25077/jfu.9.1.142-149.2020 DOI: https://doi.org/10.25077/jfu.9.1.142-149.2020
Sutantyo, T. E. P., Belfaqih, I. H., & Prayitno, T. B. (2015). Quantum-Carnot engine for particle confined to cubic potential. AIP Conference Proceedings, 1677 (1), 040011. https://doi.org/10.1063/1.4930655 DOI: https://doi.org/10.1063/1.4930655
Wang, R., Chen, L., Ge, Y., & Feng, H. (2021). Optimizing power and thermal efficiency of an irreversible variable-temperature heat reservoir lenoir cycle. Applied Sciences (Switzerland), 11(15). https://doi.org/10.3390/app11157171 DOI: https://doi.org/10.3390/app11157171
Yin, Y., Chen, L., Wu, F., & Ge, Y. (2020). Work output and thermal efficiency of an endoreversible entangled quantum Stirling engine with one dimensional isotropic Heisenberg model. Physica A: Statistical Mechanics and Its Applications, 547, 123856. https://doi.org/10.1016/j.physa.2019.123856 DOI: https://doi.org/10.1016/j.physa.2019.123856
Zettili, N., & Zahed, I. (2003). Quantum Mechanics: Concepts and Applications. American Journal of Physics, 71(1), 93–93. https://doi.org/10.1119/1.1522702 DOI: https://doi.org/10.1119/1.1522702
Zettira, Z., Fahriza, A., Abdullah, Z., & Sutantyo, T. E. P. (2023). Enhancing Quantum Otto Engine Performance in Generalized External Potential on Bose-Einstein Condensation Regime. 1–14. http://arxiv.org/abs/2307.01805
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2023 Zahara Zettira, Trengginas Eka Putra Sutantyo, Zulfi Abdullah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Please find the rights and licenses in JIF (Jurnal Ilmu Fisika).
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial 4.0 International License.
2. Author's Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
JIF's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, JIF permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and JIF on distributing works in the journal.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale,
- The right to self-archive the article.
5. Co-Authorship
If the article was jointly prepared by other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or JIF upon two months's notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party's notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of JIF.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by JIF or its sublicensee.
8. Miscellaneous
JIF will publish the article (or have it published) in the journal if the article's editorial process is successfully completed and JIF or its sublicensee has become obligated to have the article published. JIF may conform the article to a style of punctuation, spelling, capitalization, referencing and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.