The Accuracy of TIAC Calculated Using SPECT/CT Imaging Data at 36- and 100-Hours Post Injection and Prior Information in 177Lu-DOTATATE

Authors

  • Rizka Mutik Siyami Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang 25163, Indonesia
  • Sri Oktamuliani Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang 25163, Indonesia
  • M. Dlorifun Naqiyyun Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
  • Intan Apriliani Syaridatul Mu'minah Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia

DOI:

https://doi.org/10.25077/jif.16.1.55-62.2024

Keywords:

Absorbed dose, Bayesian, TIAC, SPECT-CT, 177Lu-DOTATATE

Abstract

In internal radionuclide therapy, there is a growing demand for streamlined methods that alleviate the measurement burden on patients and reduce the associated costs of individual dosimetry. This study assessed the precision of the Two Time Point Dosimetry (2TPD) model, a data-efficient approach, compared to the well-established All Time Point Dosimetry (ATPD) model. The investigation involved the analysis of time-activity data collected from the kidneys of seven patients who were administered 177Lu-DOTATATE and underwent SPECT/CT imaging (PMID 3344306). Data points were specifically gathered at the 36-hour and 100-hour post-injection marks. Employing prior information, a monoexponential function was applied to fit the biokinetic data. Consequently, two crucial metrics, TIAC ATPD and TIAC 2TPD, were computed for ATPD and 2TPD, respectively. To provide a benchmark, the TIAC determined via the Hänscheid method was also incorporated for comparison. The comparative analysis revealed that the percentage error between the population ATPD model and the 2TPD model was (3.97 ± 7.85)%, and for the Hänscheid model, it was (1.8 ± 7.9)%. These findings affirm that the accuracy of TIAC values derived from the 2TPD approach, leveraging prior-information fitting, is reasonably satisfactory.

Downloads

Download data is not yet available.

References

Bergsma, H., Konijnenberg, M. W., van der Zwan, W. A., Kam, B. L. R., Teunissen, J. J. M., Kooij, P. P., Mauff, K. A. L., Krenning, E. P., & Kwekkeboom, D. J. (2016). Nephrotoxicity after PRRT with 177 Lu-DOTA-octreotate. European Journal of Nuclear Medicine and Molecular Imaging, 43, 1802–1811.

Bolch, W. E., Eckerman, K. F., Sgouros, G., & Thomas, S. R. (2009). MIRD pamphlet no. 21: a generalized schema for radiopharmaceutical dosimetry—standardization of nomenclature. Journal of Nuclear Medicine, 50(3), 477–484.

Cherry, S. R., Sorenson, J. A., & Phelps, M. E. (2012). Physics in nuclear medicine e-Book. Elsevier Health Sciences.

Devasia, T. P., Dewaraja, Y. K., Frey, K. A., Wong, K. K., & Schipper, M. J. (2021). A Novel Time-Activity Information-Sharing Approach Using Nonlinear Mixed Models for Patient-Specific Dosimetry with Reduced Imaging Time Points: Application in SPECT/CT After 177Lu-DOTATATE. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine, 62(8), 1118–1125. https://doi.org/10.2967/jnumed.120.256255

Gear, J. I., Cox, M. G., Gustafsson, J., Gleisner, K. S., Murray, I., Glatting, G., Konijnenberg, M., & Flux, G. D. (2018). EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations. European Journal of Nuclear Medicine and Molecular Imaging, 45(13), 2456–2474.

Glatting, G., Bardiès, M., & Lassmann, M. (2013). Treatment planning in molecular radiotherapy. Zeitschrift Für Medizinische Physik, 23(4), 262–269.

Glatting, G., Kletting, P., Reske, S. N., Hohl, K., & Ring, C. (2007). Choosing the optimal fit function: Comparison of the Akaike information criterion and the F-test. Medical Physics, 34(11), 4285–4292. https://doi.org/10.1118/1.2794176

Gustafsson, J., & Taprogge, J. (2022). Theoretical aspects on the use of single-time-point dosimetry for radionuclide therapy. Physics in Medicine & Biology, 67(2), 25003.

Hänscheid, H., Lapa, C., Buck, A. K., Lassmann, M., & Werner, R. A. (2018). Dose mapping after endoradiotherapy with 177Lu-DOTATATE/DOTATOC by a single measurement after 4 days. Journal of Nuclear Medicine, 59(1), 75–81.

Hardiansyah, D., Maass, C., Attarwala, A. A., Müller, B., Kletting, P., Mottaghy, F. M., & Glatting, G. (2016). The role of patient-based treatment planning in peptide receptor radionuclide therapy. European Journal of Nuclear Medicine and Molecular Imaging, 43(5), 871–880.

Haug, A. R. (2020). PRRT of neuroendocrine tumors: individualized dosimetry or fixed dose scheme? EJNMMI Research, 10(1), 1–3.

Hou, X., Brosch, J., Uribe, C., Desy, A., Böning, G., Beauregard, J.-M., Celler, A., & Rahmim, A. (2021). Feasibility of single-time-point dosimetry for radiopharmaceutical therapies. Journal of Nuclear Medicine, 62(7), 1006–1011.

Jiménez-Franco, L. D., Glatting, G., Prasad, V., Weber, W. A., Beer, A. J., & Kletting, P. (2021). Effect of tumor perfusion and receptor density on tumor control probability in 177Lu-DOTATATE therapy: An in silico analysis for standard and optimized treatment. Journal of Nuclear Medicine, 62(1), 92–98. https://doi.org/10.2967/jnumed.120.245068

Kam, B. L. R., Teunissen, J. J. M., Krenning, E. P., de Herder, W. W., Khan, S., Van Vliet, E. I., & Kwekkeboom, D. J. (2012). Lutetium-labelled peptides for therapy of neuroendocrine tumours. European Journal of Nuclear Medicine and Molecular Imaging, 39(1), 103–112.

Kletting, P., Schimmel, S., Kestler, H. A., Hänscheid, H., Luster, M., Fernandez, M., Bröer, J. H., Nosske, D., Lassmann, M., & Glatting, G. (2013). Molecular radiotherapy: the NUKFIT software for calculating the time‐integrated activity coefficient. Medical Physics, 40(10), 102504.

Maaß, C., Sachs, J. P., Hardiansyah, D., Mottaghy, F. M., Kletting, P., & Glatting, G. (2016). Dependence of treatment planning accuracy in peptide receptor radionuclide therapy on the sampling schedule. EJNMMI Research, 6(1), 1–9.

Miederer, M., Reber, H., Helisch, A., Fottner, C., Weber, M., & Schreckenberger, M. (2012). One single-time-point kidney uptake from OctreoScan correlates with number of desintegrations measured over 72 hours and calculated for the 6.7 hours half-life nuclide 177Lu. Clinical Nuclear Medicine, 37(10), e245–e248.

Siegel, J. A., Thomas, S. R., Stubbs, J. B., Stabin, M. G., Hays, M. T., Koral, K. F., Robertson, J. S., Howell, R. W., Wessels, B. W., & Fisher, D. R. (1999). MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. Journal of Nuclear Medicine, 40(2), 37S-61S.

Thundimadathil, J. (2012). Cancer treatment using peptides: current therapies and future prospects. Journal of Amino Acids, 2012:967347. doi: 10.1155/2012/967347.

Vicini, P., Brill, A. B., Stabin, M. G., & Rescigno, A. (2008). Kinetic modeling in support of radionuclide dose assessment. Seminars in Nuclear Medicine, 38(5), 335–346. https://doi.org/10.1053/j.semnuclmed.2008.05.007

Downloads

Published

2023-11-11

How to Cite

Siyami, R. M., Sri Oktamuliani, M. Dlorifun Naqiyyun, & Intan Apriliani Syaridatul Mu’minah. (2023). The Accuracy of TIAC Calculated Using SPECT/CT Imaging Data at 36- and 100-Hours Post Injection and Prior Information in 177Lu-DOTATATE. JURNAL ILMU FISIKA, 16(1), 55–62. https://doi.org/10.25077/jif.16.1.55-62.2024

Issue

Section

Research Article

Citation Check