Uncertainty in the Management of Tropical Peatlands for Oil Palm Plantations due to Drainage Practices


  • Aswandi Aswandi Faculty of Agriculture, Universitas Jambi, Jambi, 36361, Indonesia




tropical peatlands, oil palm plantations, drainage practices , Jambi


The conversion of tropical peatlands to oil palm plantations has affected the long-term storage stability of water and carbon. The conversion requires a drainage system that results in land subsidence and, in turn, reduces the carrying capacity of water storage and carbon stocks. This study aims to analyze subsidence from long-term observations (2004-2020) to obtain an appropriate water management measure for three scenarios of drainage depths at the oil palm plantations in Jambi Province. It is found that the reduction is quite variable depending on the level of drainage depths. The subsidence was 55 cm, 49 cm, and 34.7 cm for deep, moderate, and shallow drainage conditions. The groundwater level was deeper than 100 cm, which is far below the threshold of 40 cm, as stated in the government regulations. However, the regulations are still debated since subsidence must occur in drained peatlands regardless of the water level. The observed large subsidence implies that better water management in a new site is crucial and necessary to reduce the impact of peatlands degradation relative to current conditions and that high rates of land subsidence should be accepted as an inevitable change from the conversion of tropical peatlands to oil palm plantations.


Download data is not yet available.


Andriesse, J. P. (1988). Nature and Management of Tropical Peat Soils. Food & Agriculture Org., 188 pp.

Aswandi, Susanto, R. H., Saleh, E., Abdillah, M.R. & Iskandar, I. (2017). Simulation of CO2 emission and land subsidence in reclaimed tidal peat swamp in Berbak Delta, Jambi-Indonesia. geomate, https://doi.org/10.21660/2017.29.160625. DOI: https://doi.org/10.21660/2017.29.160625

Fontaine, S., Bardoux, G., Abbadie, L. & Mariotti, A. (2004). Carbon input to soil may decrease soil carbon content. Ecology Letters, 7, 314–320, https://doi.org/10.1111/j.1461-0248.2004.00579.x. DOI: https://doi.org/10.1111/j.1461-0248.2004.00579.x

Hirano, T., Kusin, K, Limin, S. & Osaki, M. (2014). Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland. Global Change Biology, 20, 555–565, https://doi.org/10.1111/gcb.12296. DOI: https://doi.org/10.1111/gcb.12296

Hooijer, A., Page, S., Jauhiainen, J. Lee, W.A., Lu, X.X., Idris, A. & Anshari, G. (2012). Subsidence and carbon loss in drained tropical peatlands. Biogeosciences, 9, 1053–1071, https://doi.org/10.5194/bg-9-1053-2012. DOI: https://doi.org/10.5194/bg-9-1053-2012

Jaenicke, J., Wösten, H., Budiman, A. & Siegert, F. (2010). Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions. Mitig Adapt Strateg Glob Change, 15, 223–239, https://doi.org/10.1007/s11027-010-9214-5. DOI: https://doi.org/10.1007/s11027-010-9214-5

Jauhiainen, J., Hooijer, A. & Page, S.E. (2012). Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia. Biogeosciences, 9, 617–630, https://doi.org/10.5194/bg-9-617-2012. DOI: https://doi.org/10.5194/bg-9-617-2012

Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S. & Vasander, H. (2014). Heterotrophic respiration in drained tropical peat is greatly affected by temperature—a passive ecosystem cooling experiment. Environ. Res. Lett., 9, 105013, https://doi.org/10.1088/1748-9326/9/10/105013. DOI: https://doi.org/10.1088/1748-9326/9/10/105013

Kuzyakov, Y., Friedel, J. K. & Stahr, K. (2000). Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry, 32, 1485–1498, https://doi.org/10.1016/S0038-0717(00)00084-5. DOI: https://doi.org/10.1016/S0038-0717(00)00084-5

Kværner, J., and Snilsberg, P. (2008). The Romeriksporten railway tunnel — Drainage effects on peatlands in the lake Northern Puttjern area. Engineering Geology, 101, 75–88, https://doi.org/10.1016/j.enggeo.2008.04.002. DOI: https://doi.org/10.1016/j.enggeo.2008.04.002

Lloyd, J., and Taylor, J. A. (1994). On the Temperature Dependence of Soil Respiration. Functional Ecology, 8, 315–323, https://doi.org/10.2307/2389824. DOI: https://doi.org/10.2307/2389824

Martin, E. (2020). Regu Peduli Air Gambut. Zoological Society of London (ZSL) Indonesia,.

Parish, F., Lim, S. S., Perumal, B. & Giesen, W. (2012). RSPO Manual on Best Management Practices (BMPs) for Oil Palm Cultivation on Peat. RSPO,.

Pemerintah Pusat, (2014). PP No. 71 Tahun 2014 tentang Perlindungan Dan Pengelolaan Ekosistem Gambut [JDIH BPK RI].

——, (2016). PP No. 57 Tahun 2016 tentang Perubahan atas Peraturan Pemerintah Nomor 71 Tahun 2014 tentang Perlindungan dan Pengelolaan Ekosistem Gambut [JDIH BPK RI].

Sim, L. K., and Balamurugan, G. (1991). Urbanization and urban water problems in Southeast Asia a case of unsustainable development. Journal of Environmental Management, 32, 195–209, https://doi.org/10.1016/S0301-4797(05)80051-9. DOI: https://doi.org/10.1016/S0301-4797(05)80051-9

Wösten, J. H. M., Ismail, A. B. & van Wijk, A. L. M. (1997). Peat subsidence and its practical implications: a case study in Malaysia. Geoderma, 78, 25–36, https://doi.org/10.1016/S0016-7061(97)00013-X. DOI: https://doi.org/10.1016/S0016-7061(97)00013-X




How to Cite

Aswandi, A. (2023). Uncertainty in the Management of Tropical Peatlands for Oil Palm Plantations due to Drainage Practices . JURNAL ILMU FISIKA, 15(2), 137–145. https://doi.org/10.25077/jif.15.2.137-145.2023



Research Article

Citation Check