An Analysis of the Schrodinger Equation Model for the Distribution Rate of Stock Returns

Authors

  • Agus Kartono Department of Physics, Faculty of Mathematical and Natural Sciences, IPB University (Bogor Agricultural University), Jalan Meranti, Building Wing S, 2nd Floor, Kampus IPB Dramaga, Bogor 16680, Indonesia
  • Hilda Meiranita Prastika Dewi Department of Physics, Faculty of Mathematical and Natural Sciences, IPB University (Bogor Agricultural University), Jalan Meranti, Building Wing S, 2nd Floor, Kampus IPB Dramaga, Bogor 16680, Indonesia
  • Irmansyah Irmansyah Department of Physics, Faculty of Mathematical and Natural Sciences, IPB University (Bogor Agricultural University), Jalan Meranti, Building Wing S, 2nd Floor, Kampus IPB Dramaga, Bogor 16680, Indonesia

DOI:

https://doi.org/10.25077/jif.15.2.166-174.2023

Keywords:

Schrodinger equation model, potential delta, quantum mechanical model, stock returns

Abstract

Quantum mechanics is a theory that describes the behavior of particles in the microscopic world. If the stock index can be considered an object on a macro scale, then every stock of a stock index is an object on a micro-scale. The stock price can be analogous to being a particle. This study aimed to obtain the density distribution of stock returns. Modeling stock returns distribution using a Schrodinger equation model with the assumption that stock is a particle in the good delta potential function so that stock returns as analogous to particles can be known. The Schrodinger equation can calculate stock returns expressed as an exponential distribution. The stock return density distribution using Schrodinger equation model has a higher kurtosis value than the kurtosis value in the normal distribution. The kurtosis value is the degree of the peak height of a distribution. The stock price data used is the stock price data of PT. United Tractors Tbk. and PT. Unilever Indonesia Tbk. during 2013-2018. This study shows the stock price of PT. Unilever Indonesia Tbk. has a more stable average stock price return with a more negligible risk of loss than the stock price of PT. United Tractors Tbk.

Downloads

Download data is not yet available.

References

Baaquie, B. E. (2007). Quantum finance: Path integrals and Hamiltonians for options and interest rates. Cambridge University Press.

Baaquie, B. E. (2009). Interest rates and coupon bonds in quantum finance. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511808715

Baaquie, B. E. (2018). Quantum field theory for economics and finance. Cambridge University Press. DOI: https://doi.org/10.1017/9781108399685

Cotfas, L.-A. (2013). A finite-dimensional quantum model for the stock market. Physica A: Statistical Mechanics and Its Applications, 392(2), 371–380. DOI: https://doi.org/10.1016/j.physa.2012.09.010

Farida Agustini, W., Affianti, I. R., & Putri, E. R. M. (2018). Stock price prediction using geometric Brownian motion. Journal of Physics: Conference Series, 974, 12047. DOI: https://doi.org/10.1088/1742-6596/974/1/012047

Griffiths, D. J., & Schroeter, D. F. (2018). Introduction to quantum mechanics. Cambridge university press. DOI: https://doi.org/10.1017/9781316995433

Indryani, N., Usman, M., Nabila, S. U., & Kurniasari, D. (2021). Dynamic Modeling Data Return by Using BEKK-GARCH (Study: PT. Indofarma Tbk (INAF) and PT. Kimia Farma Tbk (KAEF) from June 2015 to July 2020). Journal of Physics: Conference Series, 1751(1), 12014. DOI: https://doi.org/10.1088/1742-6596/1751/1/012014

Kuru, Ş., & Negro, J. (2008). Factorizations of one-dimensional classical systems. Annals of Physics, 323(2), 413–431. DOI: https://doi.org/10.1016/j.aop.2007.10.004

Masoud, N. M. H. (2013). The impact of stock market performance upon economic growth. International Journal of Economics and Financial Issues, 3(4), 788–798.

Menezes, R., & Oliveira, Á. (2015). Risk assessment and stock market volatility in the Eurozone: 1986-2014. Journal of Physics: Conference Series, 604(1), 12014. DOI: https://doi.org/10.1088/1742-6596/604/1/012014

Murwaningtyas, C. E., Kartiko, S. H., & Suryawan, H. P. (2019). Option pricing by using a mixed fractional Brownian motion with jumps. Journal of Physics: Conference Series, 1180(1), 12011. DOI: https://doi.org/10.1088/1742-6596/1180/1/012011

Rosadi, D. (2017). Improved structural pricing model for the fair market price of Sukuk Ijarah in Indonesia. Journal of Physics: Conference Series, 943(1), 12006. DOI: https://doi.org/10.1088/1742-6596/943/1/012006

Sukmana, A., Chin, L., & Chendra, E. (2019). Analysis of portfolio optimization with inequality constraints. Journal of Physics: Conference Series, 1218(1), 12030. DOI: https://doi.org/10.1088/1742-6596/1218/1/012030

Suresh, A. S. (2013). A study on fundamental and technical analysis. International Journal of Marketing, Financial Services & Management Research, 2(5), 44–59.

Winarno, S., Usman, M., & Kurniasari, D. (2021). Application of Vector Error Correction Model (VECM) and Impulse Response Function for Daily Stock Prices. Journal of Physics: Conference Series, 1751(1), 12016. DOI: https://doi.org/10.1088/1742-6596/1751/1/012016

Yousif, A., & Elfaki, F. (2017). Artificial Neural Network versus Linear Models Forecasting Doha Stock Market. Journal of Physics: Conference Series, 949(1), 12014. DOI: https://doi.org/10.1088/1742-6596/949/1/012014

Zhang, C., & Huang, L. (2010). A quantum model for the stock market. Physica A: Statistical Mechanics and Its Applications, 389(24), 5769–5775. DOI: https://doi.org/10.1016/j.physa.2010.09.008

Downloads

Published

2023-07-04

How to Cite

Kartono, A., Dewi, H. M. P., & Irmansyah, I. . (2023). An Analysis of the Schrodinger Equation Model for the Distribution Rate of Stock Returns. JURNAL ILMU FISIKA | UNIVERSITAS ANDALAS, 15(2), 166–174. https://doi.org/10.25077/jif.15.2.166-174.2023

Issue

Section

Research Article

Citation Check