Relationship between Solar Flux and Sunspot Activity Using Several Regression Models
DOI:
https://doi.org/10.25077/jif.15.2.146-165.2023Keywords:
Solar Flux, Sunspot Activity, Regression Analyis, Linear regression, SARIMA model analysisAbstract
This study examines the correlation and prediction between sunspots and solar flux, two closely related factors associated with solar activity, covering the period from 2005 to 2022. The study utilizes a combination of linear regression analysis and the ARIMA prediction method to analyze the relationship between these factors and forecast their values. The analysis results reveal a significant positive correlation between sunspots and solar flux. Additionally, the ARIMA prediction method suggests that the SARIMA model can effectively forecast the values of both sunspots and solar flux for a 12-period timeframe. However, it is essential to note that this study solely focuses on correlation analysis and does not establish a causal relationship. Nonetheless, the findings contribute valuable insights into future variations in solar flux and sunspot numbers, thereby aiding scientists in comprehending and predicting solar activity's potential impact on Earth. The study recommends further research to explore additional factors that may influence the relationship between sunspots and solar flux, extend the research period to enhance the accuracy of solar activity predictions and investigate alternative prediction methods to improve the precision of forecasts.
Downloads
References
Ahmed, S. (2023). A Software Framework for Predicting the Maize Yield Using Modified Multi-Layer Perceptron. Sustainability, 15(4), 3017. DOI: https://doi.org/10.3390/su15043017
Ayodele, T., Ogunjuyigbe, A., Amedu, A., & Munda, J. (2019). Prediction of global solar irradiation using hybridized k-means and support vector regression algorithms. Renewable Energy Focus, 29, 78–93. DOI: https://doi.org/10.1016/j.ref.2019.03.003
Ball, W., Haigh, J., Rozanov, E., Kuchar, A., Sukhodolov, T., Tummon, F., Shapiro, A., & Schmutz, W. (2016). High solar cycle spectral variations inconsistent with stratospheric ozone observations. Nature Geoscience, 9(3), 206–209. DOI: https://doi.org/10.1038/ngeo2640
Berrar, D. (2019). Cross-Validation. In Encyclopedia of Bioinformatics and Computational Biology; Elsevier: Amsterdam, Netherlands, 2019; pp. 542–545. DOI: https://doi.org/10.1016/B978-0-12-809633-8.20349-X
Bokde, N. D., Yaseen, Z. M., & Andersen, G. B. (2020). ForecastTB—An R package as a test-bench for time series forecasting—Application of wind speed and solar radiation modeling. Energies, 13(10), 2578. DOI: https://doi.org/10.3390/en13102578
Chatzistergos, T., Krivova, N. A., Ermolli, I., Yeo, K. L., Mandal, S., Solanki, S. K., Kopp, G., & Malherbe, J.-M. (2021). Reconstructing solar irradiance from historical Ca II K observations-I. Method and its validation. Astronomy & Astrophysics, 656, A104. DOI: https://doi.org/10.1051/0004-6361/202141516
Clette, F., Svalgaard, L., Vaquero, J. M., & Cliver, E. W. (2014). Revisiting the sunspot number: A 400-year perspective on the solar cycle. Space Science Reviews, 186, 35–103. DOI: https://doi.org/10.1007/s11214-014-0074-2
Ghimire, S., Deo, R. C., Downs, N. J., & Raj, N. (2019). Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland Australia. Journal of Cleaner Production, 216, 288–310. DOI: https://doi.org/10.1016/j.jclepro.2019.01.158
Gosiewska, A., Kozak, A., & Biecek, P. (2021). Simpler is better: Lifting interpretability-performance trade-off via automated feature engineering. Decision Support Systems, 150, 113556. DOI: https://doi.org/10.1016/j.dss.2021.113556
Guermoui, M., Benkaciali, S., Gairaa, K., Bouchouicha, K., Boulmaiz, T., & Boland, J. W. (2022). A novel ensemble learning approach for hourly global solar radiation forecasting. Neural Computing and Applications, 1–23. DOI: https://doi.org/10.1007/s00521-021-06421-9
Hao, J., & Ho, T. K. (2019). Machine learning made easy: A review of scikit-learn package in python programming language. Journal of Educational and Behavioral Statistics, 44(3), 348–361. DOI: https://doi.org/10.3102/1076998619832248
Hariri, R. H., Fredericks, E. M., & Bowers, K. M. (2019). Uncertainty in big data analytics: Survey, opportunities, and challenges. Journal of Big Data, 6(1), 1–16. DOI: https://doi.org/10.1186/s40537-019-0206-3
Hathaway, D. H., & Wilson, R. M. (2004). What the sunspot record tells us about space climate. Solar Physics, 224(1–2), 5–19. DOI: https://doi.org/10.1007/s11207-005-3996-8
Kaplan, K. (2023). The Characteristic properties of the Solar Activities during the Solar Cycle 24. DOI: https://doi.org/10.21203/rs.3.rs-2510436/v1
Khoo, K. S., Ahmad, I., Chew, K. W., Iwamoto, K., Bhatnagar, A., & Show, P. L. (2023). Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review. Progress in Energy and Combustion Science, 96, 101071. DOI: https://doi.org/10.1016/j.pecs.2023.101071
Liu, Y., Wu, H., Wang, J., & Long, M. (2022). Non-stationary Transformers: Exploring the Stationarity in Time Series Forecasting. Advances in Neural Information Processing Systems.
Lockwood, M., & Ball, W. T. (2020). Placing limits on long-term variations in quiet-Sun irradiance and their contribution to total solar irradiance and solar radiative forcing of climate. Proceedings of the Royal Society A, 476(2238), 20200077. DOI: https://doi.org/10.1098/rspa.2020.0077
Maldonado-Salguero, P., Bueso-Sánchez, M. C., Molina-García, Á., & Sánchez-Lozano, J. M. (2022). Spatio-temporal dynamic clustering modeling for solar irradiance resource assessment. Renewable Energy, 200, 344–359. DOI: https://doi.org/10.1016/j.renene.2022.09.113
Mandea, M., & Chambodut, A. (2020). Geomagnetic field processes and their implications for space weather. Surveys in Geophysics, 41, 1611–1627. DOI: https://doi.org/10.1007/s10712-020-09598-1
Marov, M. Y. (2020). Radiation and space flights safety: An insight. Acta Astronautica, 176, 580–590. DOI: https://doi.org/10.1016/j.actaastro.2020.03.022
McCready, L., Pawsey, J. L., & Payne-Scott, R. (1947). Solar radiation at radio frequencies and its relation to sunspots. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 190(1022), 357–375. DOI: https://doi.org/10.1098/rspa.1947.0081
Pala, Z., & Atici, R. (2019). Forecasting sunspot time series using deep learning methods. Solar Physics, 294(5), 50. DOI: https://doi.org/10.1007/s11207-019-1434-6
Park, C.-Y., Hong, S.-H., Lim, S.-C., Song, B.-S., Park, S.-W., Huh, J.-H., & Kim, J.-C. (2020). Inverter efficiency analysis model based on solar power estimation using solar radiation. Processes, 8(10), 1225. DOI: https://doi.org/10.3390/pr8101225
Ramirez-Vergara, J., Bosman, L. B., Wollega, E., & Leon-Salas, W. D. (2022). Review of forecasting methods to support photovoltaic predictive maintenance. Cleaner Engineering and Technology, 100460. DOI: https://doi.org/10.1016/j.clet.2022.100460
Reinders, L. J. (2021). The fairy tale of nuclear fusion. Springer. DOI: https://doi.org/10.1007/978-3-030-64344-7
Seliya, N., Abdollah Zadeh, A., & Khoshgoftaar, T. M. (2021). A literature review on one-class classification and its potential applications in big data. Journal of Big Data, 8(1), 1–31. DOI: https://doi.org/10.1186/s40537-021-00514-x
Siddique, T., Mahmud, M. S., Keesee, A. M., Ngwira, C. M., & Connor, H. (2022). A survey of uncertainty quantification in machine learning for space weather prediction. Geosciences, 12(1), 27. DOI: https://doi.org/10.3390/geosciences12010027
Sun, F., Liu, M., Wang, Y., Wang, H., & Che, Y. (2020). The effects of 3D architectural patterns on the urban surface temperature at a neighborhood scale: Relative contributions and marginal effects. Journal of Cleaner Production, 258, 120706. DOI: https://doi.org/10.1016/j.jclepro.2020.120706
Susnjak, T., Ramaswami, G. S., & Mathrani, A. (2022). Learning analytics dashboard: A tool for providing actionable insights to learners. International Journal of Educational Technology in Higher Education, 19(1), 12. DOI: https://doi.org/10.1186/s41239-021-00313-7
Thornton, P. E., Hasenauer, H., & White, M. A. (2000). Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation: An application over complex terrain in Austria. Agricultural and Forest Meteorology, 104(4), 255–271. DOI: https://doi.org/10.1016/S0168-1923(00)00170-2
Wang, H., & Xu, R. (2002). Solar-terrestrial magnetic activity and space environment: Proceedings of the COSPAR Colloquium on Solar-Terrestrial Magnetic Activity and Space Environment (STMASE), held in the NAOC in Beijing, China, September 10-12, 2001 (Vol. 14). Elsevier.
Wang, Y.-M., Sheeley Jr, N., & Lean, J. (2002). Meridional flow and the solar cycle variation of the Sun’s open magnetic flux. The Astrophysical Journal, 580(2), 1188. DOI: https://doi.org/10.1086/343845
Wehrli, C., Schmutz, W., & Shapiro, A. (2013). Correlation of spectral solar irradiance with solar activity as measured by VIRGO. Astronomy & Astrophysics, 556, L3. DOI: https://doi.org/10.1051/0004-6361/201220864
Zhang, Z., Zhang, L., Xu, H., Creed, I. F., Blanco, J. A., Wei, X., Sun, G., Asbjornsen, H., & Bishop, K. (2023). Forest water-use efficiency: Effects of climate change and management on the coupling of carbon and water processes. Forest Ecology and Management, 534, 120853. DOI: https://doi.org/10.1016/j.foreco.2023.120853
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2023 Ruben Cornelius Siagian, Lulut Alfaris, Ghulab Nabi Ahmad, Nazish Laeiq, Aldi Cahya Muhammad, Ukta Indra Nyuswantoro, Budiman Nasution
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Please find the rights and licenses in JIF (Jurnal Ilmu Fisika).
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial 4.0 International License.
2. Author's Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
JIF's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, JIF permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and JIF on distributing works in the journal.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale,
- The right to self-archive the article.
5. Co-Authorship
If the article was jointly prepared by other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or JIF upon two months's notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party's notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of JIF.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by JIF or its sublicensee.
8. Miscellaneous
JIF will publish the article (or have it published) in the journal if the article's editorial process is successfully completed and JIF or its sublicensee has become obligated to have the article published. JIF may conform the article to a style of punctuation, spelling, capitalization, referencing and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.