Effect of TiO2 on Orange Peel Activated Carbon Composite in Reducing Carbon Monoxide and Hydrocarbon Gas Emissions

Authors

  • Ya' Muhammad Arsyad Department of Physics, Faculty of Mathematic and Natural Science, Tanjungpura University, Pontianak, 78124, Indonesia
  • Dwiria Wahyuni Department of Physics, Faculty of Mathematic and Natural Science, Tanjungpura University, Pontianak, 78124, Indonesia
  • Nurhasanah Nurhasanah Department of Physics, Faculty of Mathematic and Natural Science, Tanjungpura University, Pontianak, 78124, Indonesia
  • Bintoro Siswo Nugroho Department of Physics, Faculty of Mathematic and Natural Science, Tanjungpura University, Pontianak, 78124, Indonesia
  • Riza Adriat Department of Physics, Faculty of Mathematic and Natural Science, Tanjungpura University, Pontianak, 78124, Indonesia
  • Agus Prasetiono UPT PKB, Transportation Agency of Pontianak city, Pontianak, 78244, Indonesia
  • Wahyu Tri Hidayat UPT PKB, Transportation Agency of Pontianak city, Pontianak, 78244, Indonesia

DOI:

https://doi.org/10.25077/jif.15.2.73-80.2023

Keywords:

activated carbon, orange peel, titanium dioxide, composite, gas emissions

Abstract

study aims to see the effect of adding TiO2 on activated carbon as a material for reducing CO and HC gas emissions. Activated carbon (AC) was synthesized from orange peel waste at a carbonization temperature of 600  with a 10% (w/v) ZnCl2 activator. Composite AC/TiO2 was prepared by a simple mixing method. This process obtained TiO2-modified activated carbon material with variations in TiO2 concentrations of 0%, 10%, 15%, 20%, and 25%. Scanning Electron Microscope (SEM) was performed to obtain information on the AC/TiO2 surface morphology. In the application as a CO and HC gas emission reduction material, the results of mixing AC/TiO2 are mixed with a 10% (w/v) solution of Polyvinyl Alcohol (PVA) as an adhesive and molded in the shape of a filter with two variations hole sizes with a diameter of 1 cm and 0.3 cm. Composite filter performance tests were carried out using a gas analyzer. The best result for reducing gas emissions occurred at a concentration of TiO2 15% with reduction power to reduce CO gas emission up to 53.79% and HC gas emission up to 55.57%.

Downloads

Download data is not yet available.

References

Ayala, J. R., Montero, G., Coronado, M. A., García, C., Curiel-Alvarez, M. A., José A. León, C. A. S., & Montes, D. G. (2021). Characterization of Orange Peel Waste and Valorization to Obtain Reducing Sugars. Molecules, 26(5),1348, 1-14.

Bansal, R. C., & Goyal, M. (2015). Activated Carbon Adsorption. London: CRC Press.

Basuki, K. T. (2007a). Penurunan Konsentrasi CO dan NO Pada Emisi Gas Buang Dengan Menggunakan Media Penyisipan TiO2 Lokal Pada Karbon Aktif. Jurnal Forum Nuklir, 1(1), 45–64.

Basuki, K. T. (2007b). Penurunan Konsentrasi HC dan SO2 Pada Emisi Kendaraan Dengan Menggunakan TiO2 Lokal Yang Disisipkan Karbon AKtif. Prosiding PPI - PDIPTN 2007 Pustek Akselerator Dan Proses Bahan - BATAN, 2, 105–114.

Cipto, Rahangmetan, K. A., Sariman, F., Parenden, D., & Christian, W. W. (2021). Reducing Emissions CO, CO 2 , and HC, on Vehicles with Gasoline Fuel. IOP Conference Series: Materials Science and Engineering, 1125(1), 012115.

Dey, S., & Mehta, N. S. (2020). Synthesis and applications of titanium oxide catalysts for lower temperature CO oxidation. Current Research in Green and Sustainable Chemistry, 3(July), 100022.

El Nemr, A., Aboughaly, R. M., El Sikaily, A., Ragab, S., Masoud, M. S., & Ramadan, M. S. (2020). Microporous nano-activated carbon type I derived from orange peel and its application for Cr(VI) removal from aquatic environment. Biomass Conversion and Biorefinery, 12, 5125–5143.

El Nemr, A., Aboughaly, R. M., El Sikaily, A., Ragab, S., Masoud, M. S., & Ramadan, M. S. (2021). Utilization of Citrus aurantium peels for sustainable production of high surface area type I microporous nano activated carbons. Biomass Conversion and Biorefinery, 13, 1613–1631.

Erprihana, A. A., & Hartanto, D. (2014). Pembuatan Karbon Aktif Dari Kulit Jeruk Keprok (Citrus reticulata) untuk Adsorpsi Pewarna Remazol Brilliant Blue. Jurnal Bahan Alam Terbarukan, 3(2), 25–32.

Ibeh, P. O., García-Mateos, F. J., Rosas, J. M., Rodríguez-Mirasol, J., & Cordero, T. (2019). Activated carbon monoliths from lignocellulosic biomass waste for electrochemical applications. Journal of the Taiwan Institute of Chemical Engineers, 97, 480–488.

Kristianto, H., & Arie, A. A. (2015). Pengaruh Rasio Impregnant Zncl2 dan Temperatur Karbonisasi Terhadap Luas Permukaan Karbon Aktif Dari Kulit Jeruk. Jurnal Integrasi Proses, 5(3), 150–154.

Neme, I., Gonfa, G., & Masi, C. (2022). Activated carbon from biomass precursors using phosphoric acid: A review. Heliyon, 8(12), e11940. https://doi.org/10.1016/j.heliyon.2022.e11940

Ogur, E. O., & Kariuki, S. M. (2014). Effect of car emissions on human health and the environment. International Journal of Applied Engineering Research, 9(21), 11121–11128.

Redha, F., Junaidy, R., & Hasmita, I. (2018). Penyerapan Emisi CO dan NOx Pada Gas Buang Kendaraan Menggunakan Karbon Aktif dari Kulit Cangkang Biji Kopi. Biopropal Industri, 9(1), 37–47.

Septiani, U., Gustiana, M., & -, S. (2015). Pembuatan dan Karakterisasi Katalis TiO2/Karbon Aktif dengan Metode Solid State. Jurnal Riset Kimia, 9(1), 34–38.

Setiyono, D. R., & Widjanarko, D. (2018). Penggunaan Serbuk TiO2 dan Karbon Aktif Sebagai Campuran Bahan Catalytic Converter Keramik untuk Mengurangi Polutan Berbahaya pada Kendaraan Bermesin Bensin. Jurnal Rekayasa Kimia & Lingkungan, 13(2), 165–173.

Viena, V., Elvitriana, E., & Wardani, S. (2018). Application of banana peels waste as adsorbents for the removal of CO, NO, NOx, and SO2 gases from motorcycle emissions. IOP Conference Series: Materials Science and Engineering, 334(1).

Wahyuni, D., Nurhanisa, M., Bahtiar, A., & Rutdiyanti, R. (2022). Optimasi Sintesis Karbon Aktif dari Bambu Buluh (Schizostachyum brachycladum) dengan Variasi Suhu Karbonisasi untuk Penyerapan Besi pada Air Sumur Gambut. Jurnal Fisika Unand, 11(3), 292–298. https://doi.org/10.25077/jfu.11.3.292-298.2022

Wang, X., Cheng, H., Ye, G., Fan, J., Yao, F., Wang, Y., Jiao, Y., Zhu, W., Huang, H., & Ye, D. (2022). Key factors and primary modification methods of activated carbon and their application in adsorption of carbon-based gases: A review. Chemosphere, 287(P2), 131995. https://doi.org/10.1016/j.chemosphere.2021.131995

Widihati, I. A. G., Apriliyanto, I., & Sibarani, J. (2021). Karakterisasi Zeolit Mangan Termodifikasi TiO2 Serta Aplikasinya Sebagai Filter Gas Buang Kendaraan Bermotor Dalam Penurunan Kadar Gas CO, HC, dan Pb. Jurnal Kimia (Journal of Chemistry), 15(1), 107–114.

Winoko, Y. A., & Wicaksono, A. G. (2021). Aktifasi Tempurung Kelapa Untuk Mereduksi Emisi Gas Buang Motor Bakar. Rang Teknik Journal, 4(1), 104–108.

Yuliusman, Sari, M. P., & Nafisah, A. R. (2019). Modification of low-density polyethylene based activated carbon using titanium dioxide for carbon monoxide and hydrocarbon adsorption. AIP Conference Proceedings, 2175.

Yuliusman, Ayu, M. P., Hanafi, A., & Nafisah, A. R. (2020). Adsorption of carbon monoxide and hydrocarbon components in motor vehicle exhaust emission using magnesium oxide loaded on durian peel activated carbon. AIP Conference Proceedings, 2230.

Downloads

Published

2023-04-21

How to Cite

Ya’ Muhammad Arsyad, Wahyuni, D., Nurhasanah, N., Bintoro Siswo Nugroho, Riza Adriat, Agus Prasetiono, & Wahyu Tri Hidayat. (2023). Effect of TiO2 on Orange Peel Activated Carbon Composite in Reducing Carbon Monoxide and Hydrocarbon Gas Emissions. JURNAL ILMU FISIKA, 15(2), 73–80. https://doi.org/10.25077/jif.15.2.73-80.2023

Issue

Section

Research Article

Citation Check