Effect of TiO2 on Orange Peel Activated Carbon Composite in Reducing Carbon Monoxide and Hydrocarbon Gas Emissions

Authors

  • Ya' Muhammad Arsyad Department of Physics, Faculty of Mathematic and Natural Science, Tanjungpura University, Pontianak, 78124, Indonesia
  • Dwiria Wahyuni Department of Physics, Faculty of Mathematic and Natural Science, Tanjungpura University, Pontianak, 78124, Indonesia
  • Nurhasanah Nurhasanah Department of Physics, Faculty of Mathematic and Natural Science, Tanjungpura University, Pontianak, 78124, Indonesia
  • Bintoro Siswo Nugroho Department of Physics, Faculty of Mathematic and Natural Science, Tanjungpura University, Pontianak, 78124, Indonesia
  • Riza Adriat Department of Physics, Faculty of Mathematic and Natural Science, Tanjungpura University, Pontianak, 78124, Indonesia
  • Agus Prasetiono UPT PKB, Transportation Agency of Pontianak city, Pontianak, 78244, Indonesia
  • Wahyu Tri Hidayat UPT PKB, Transportation Agency of Pontianak city, Pontianak, 78244, Indonesia

DOI:

https://doi.org/10.25077/jif.15.2.73-80.2023

Keywords:

activated carbon, orange peel, titanium dioxide, composite, gas emissions

Abstract

study aims to see the effect of adding TiO2 on activated carbon as a material for reducing CO and HC gas emissions. Activated carbon (AC) was synthesized from orange peel waste at a carbonization temperature of 600  with a 10% (w/v) ZnCl2 activator. Composite AC/TiO2 was prepared by a simple mixing method. This process obtained TiO2-modified activated carbon material with variations in TiO2 concentrations of 0%, 10%, 15%, 20%, and 25%. Scanning Electron Microscope (SEM) was performed to obtain information on the AC/TiO2 surface morphology. In the application as a CO and HC gas emission reduction material, the results of mixing AC/TiO2 are mixed with a 10% (w/v) solution of Polyvinyl Alcohol (PVA) as an adhesive and molded in the shape of a filter with two variations hole sizes with a diameter of 1 cm and 0.3 cm. Composite filter performance tests were carried out using a gas analyzer. The best result for reducing gas emissions occurred at a concentration of TiO2 15% with reduction power to reduce CO gas emission up to 53.79% and HC gas emission up to 55.57%.

Downloads

Download data is not yet available.

References

Ayala, J. R., Montero, G., Coronado, M. A., García, C., Curiel-Alvarez, M. A., José A. León, C. A. S., & Montes, D. G. (2021). Characterization of Orange Peel Waste and Valorization to Obtain Reducing Sugars. Molecules, 26(5),1348, 1-14. DOI: https://doi.org/10.3390/molecules26051348

Bansal, R. C., & Goyal, M. (2015). Activated Carbon Adsorption. London: CRC Press.

Basuki, K. T. (2007a). Penurunan Konsentrasi CO dan NO Pada Emisi Gas Buang Dengan Menggunakan Media Penyisipan TiO2 Lokal Pada Karbon Aktif. Jurnal Forum Nuklir, 1(1), 45–64. DOI: https://doi.org/10.17146/jfn.2007.1.1.3272

Basuki, K. T. (2007b). Penurunan Konsentrasi HC dan SO2 Pada Emisi Kendaraan Dengan Menggunakan TiO2 Lokal Yang Disisipkan Karbon AKtif. Prosiding PPI - PDIPTN 2007 Pustek Akselerator Dan Proses Bahan - BATAN, 2, 105–114.

Cipto, Rahangmetan, K. A., Sariman, F., Parenden, D., & Christian, W. W. (2021). Reducing Emissions CO, CO 2 , and HC, on Vehicles with Gasoline Fuel. IOP Conference Series: Materials Science and Engineering, 1125(1), 012115. DOI: https://doi.org/10.1088/1757-899X/1125/1/012115

Dey, S., & Mehta, N. S. (2020). Synthesis and applications of titanium oxide catalysts for lower temperature CO oxidation. Current Research in Green and Sustainable Chemistry, 3(July), 100022. DOI: https://doi.org/10.1016/j.crgsc.2020.100022

El Nemr, A., Aboughaly, R. M., El Sikaily, A., Ragab, S., Masoud, M. S., & Ramadan, M. S. (2020). Microporous nano-activated carbon type I derived from orange peel and its application for Cr(VI) removal from aquatic environment. Biomass Conversion and Biorefinery, 12, 5125–5143. DOI: https://doi.org/10.1007/s13399-020-00995-5

El Nemr, A., Aboughaly, R. M., El Sikaily, A., Ragab, S., Masoud, M. S., & Ramadan, M. S. (2021). Utilization of Citrus aurantium peels for sustainable production of high surface area type I microporous nano activated carbons. Biomass Conversion and Biorefinery, 13, 1613–1631. DOI: https://doi.org/10.1007/s13399-021-01457-2

Erprihana, A. A., & Hartanto, D. (2014). Pembuatan Karbon Aktif Dari Kulit Jeruk Keprok (Citrus reticulata) untuk Adsorpsi Pewarna Remazol Brilliant Blue. Jurnal Bahan Alam Terbarukan, 3(2), 25–32. DOI: https://doi.org/10.15294/jbat.v3i2.3699

Ibeh, P. O., García-Mateos, F. J., Rosas, J. M., Rodríguez-Mirasol, J., & Cordero, T. (2019). Activated carbon monoliths from lignocellulosic biomass waste for electrochemical applications. Journal of the Taiwan Institute of Chemical Engineers, 97, 480–488. DOI: https://doi.org/10.1016/j.jtice.2019.02.019

Kristianto, H., & Arie, A. A. (2015). Pengaruh Rasio Impregnant Zncl2 dan Temperatur Karbonisasi Terhadap Luas Permukaan Karbon Aktif Dari Kulit Jeruk. Jurnal Integrasi Proses, 5(3), 150–154.

Neme, I., Gonfa, G., & Masi, C. (2022). Activated carbon from biomass precursors using phosphoric acid: A review. Heliyon, 8(12), e11940. https://doi.org/10.1016/j.heliyon.2022.e11940 DOI: https://doi.org/10.1016/j.heliyon.2022.e11940

Ogur, E. O., & Kariuki, S. M. (2014). Effect of car emissions on human health and the environment. International Journal of Applied Engineering Research, 9(21), 11121–11128.

Redha, F., Junaidy, R., & Hasmita, I. (2018). Penyerapan Emisi CO dan NOx Pada Gas Buang Kendaraan Menggunakan Karbon Aktif dari Kulit Cangkang Biji Kopi. Biopropal Industri, 9(1), 37–47.

Septiani, U., Gustiana, M., & -, S. (2015). Pembuatan dan Karakterisasi Katalis TiO2/Karbon Aktif dengan Metode Solid State. Jurnal Riset Kimia, 9(1), 34–38. DOI: https://doi.org/10.25077/jrk.v9i1.257

Setiyono, D. R., & Widjanarko, D. (2018). Penggunaan Serbuk TiO2 dan Karbon Aktif Sebagai Campuran Bahan Catalytic Converter Keramik untuk Mengurangi Polutan Berbahaya pada Kendaraan Bermesin Bensin. Jurnal Rekayasa Kimia & Lingkungan, 13(2), 165–173. DOI: https://doi.org/10.23955/rkl.v13i2.11901

Viena, V., Elvitriana, E., & Wardani, S. (2018). Application of banana peels waste as adsorbents for the removal of CO, NO, NOx, and SO2 gases from motorcycle emissions. IOP Conference Series: Materials Science and Engineering, 334(1). DOI: https://doi.org/10.1088/1757-899X/334/1/012037

Wahyuni, D., Nurhanisa, M., Bahtiar, A., & Rutdiyanti, R. (2022). Optimasi Sintesis Karbon Aktif dari Bambu Buluh (Schizostachyum brachycladum) dengan Variasi Suhu Karbonisasi untuk Penyerapan Besi pada Air Sumur Gambut. Jurnal Fisika Unand, 11(3), 292–298. https://doi.org/10.25077/jfu.11.3.292-298.2022 DOI: https://doi.org/10.25077/jfu.11.3.292-298.2022

Wang, X., Cheng, H., Ye, G., Fan, J., Yao, F., Wang, Y., Jiao, Y., Zhu, W., Huang, H., & Ye, D. (2022). Key factors and primary modification methods of activated carbon and their application in adsorption of carbon-based gases: A review. Chemosphere, 287(P2), 131995. https://doi.org/10.1016/j.chemosphere.2021.131995 DOI: https://doi.org/10.1016/j.chemosphere.2021.131995

Widihati, I. A. G., Apriliyanto, I., & Sibarani, J. (2021). Karakterisasi Zeolit Mangan Termodifikasi TiO2 Serta Aplikasinya Sebagai Filter Gas Buang Kendaraan Bermotor Dalam Penurunan Kadar Gas CO, HC, dan Pb. Jurnal Kimia (Journal of Chemistry), 15(1), 107–114. DOI: https://doi.org/10.24843/JCHEM.2021.v15.i01.p15

Winoko, Y. A., & Wicaksono, A. G. (2021). Aktifasi Tempurung Kelapa Untuk Mereduksi Emisi Gas Buang Motor Bakar. Rang Teknik Journal, 4(1), 104–108. DOI: https://doi.org/10.31869/rtj.v4i1.2211

Yuliusman, Sari, M. P., & Nafisah, A. R. (2019). Modification of low-density polyethylene based activated carbon using titanium dioxide for carbon monoxide and hydrocarbon adsorption. AIP Conference Proceedings, 2175. DOI: https://doi.org/10.1063/1.5134592

Yuliusman, Ayu, M. P., Hanafi, A., & Nafisah, A. R. (2020). Adsorption of carbon monoxide and hydrocarbon components in motor vehicle exhaust emission using magnesium oxide loaded on durian peel activated carbon. AIP Conference Proceedings, 2230. DOI: https://doi.org/10.1063/5.0002351

Downloads

Published

2023-04-21

How to Cite

Ya’ Muhammad Arsyad, Wahyuni, D., Nurhasanah, N., Bintoro Siswo Nugroho, Riza Adriat, Agus Prasetiono, & Wahyu Tri Hidayat. (2023). Effect of TiO2 on Orange Peel Activated Carbon Composite in Reducing Carbon Monoxide and Hydrocarbon Gas Emissions. JURNAL ILMU FISIKA, 15(2), 73–80. https://doi.org/10.25077/jif.15.2.73-80.2023

Issue

Section

Research Article

Citation Check