Synthesis of Fluorescent Carbon Dots (CDs) Using Laser Ablation Method for Bioimaging Application

Authors

  • Jumardin Jumardin Department of Physics, Faculty of Sciences and Technology, Alauddin State Islamic University of Makassar Gowa, 92113, Indonesia
  • Akhiruddin Maddu Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia
  • Kokoeh Santoso Department of Anatomy, Physiology and Pharmacology, School of Veterinary and Biomedical, IPB University Bogor, 16680, Indonesia
  • Isnaeni Isnaeni Research Center for Photonics, National Research and Innovation Agency (Badan Riset dan Inovasi Nasional, BRIN) BJ Habibie Science and Technology Park, Banten 15314, Indonesia

DOI:

https://doi.org/10.25077/jif.15.2.91-105.2023

Keywords:

Carbon dots, Laser ablation, Fluoresccent, Bioimaging

Abstract

Carbon Dots (CDs) were synthesized using laser ablation by focusing the laser beam on carbon (Tea) material in colloid (CH3) for 3 hours. UV-Vis spectroscopic and fluorometric characterization showed absorption of the wavelength peaks caused by the control treatment and after laser ablation and coating using Poly Ethylene Glycol (PEG400). The excitation and emission energies are formulations of CDs absorbance wavelength and fluorescence intensity. The absorbance coefficient is obtained based on the absorbance value of the cuvette thickness. The transmittance value (T) is obtained based on the absorption coefficient multiplied by 100%. CD fluorescence wavelength based on control parameters was 489 nm. After laser ablation was 496 nm, and after coating was 511 nm. CDs morphology and size characteristics are 4 nm to 10 nm based on TEM measurements. Fluorescence analysis for bioimaging applications on the luminescence intensity value of internalized blue CDs in zebrafish eye organs. The average intensity of CDs in the eye organs, gill, intestinal, dorsal, and tail injection points was 88.15 %, 91.58 %, 92.76 %, and 0.00 %.

Downloads

Download data is not yet available.

References

Aji, M. P., Susanto, Wiguna, P. A., & Sulhadi. (2017). Facile synthesis of luminescent carbon dots from mangosteen peel by pyrolysis method. Journal of Theoretical and Applied Physics, 11(2), 119–126. https://doi.org/10.1007/s40094-017-0250-3

Alkian, I., Sutanto, H., & Hadiyanto. (2022). Quantum yield optimization of carbon dots using response surface methodology and its application as control of Fe 3+ ion levels in drinking water. Materials Research Express, 9(1), 015702. https://doi.org/10.1088/2053-1591/ac3f60

Biswal, M. R., & Bhatia, S. (2021). Carbon Dot Nanoparticles: Exploring the Potential Use for Gene Delivery in Ophthalmic Diseases. Nanomaterials, 11(4), 935. https://doi.org/10.3390/nano11040935

Blackburn, J. S., Liu, S., Raimondi, A. R., Ignatius, M. S., Salthouse, C. D., & Langenau, D. M. (2011). High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope. Nature Protocols, 6(2), 229–241. https://doi.org/10.1038/nprot.2010.170

Dal, N. K., Kocere, A., Wohlmann, J., Van Herck, S., Bauer, T. A., Resseguier, J., Bagherifam, S., Hyldmo, H., Barz, M., De Geest, B. G., & Fenaroli, F. (2020). Zebrafish Embryos Allow Prediction of Nanoparticle Circulation Times in Mice and Facilitate Quantification of Nanoparticle–Cell Interactions. Small, 16(5), 1906719. https://doi.org/10.1002/smll.201906719

Dias, C., Vasimalai, N., P. Sárria, M., Pinheiro, I., Vilas-Boas, V., Peixoto, J., & Espiña, B. (2019). Biocompatibility and Bioimaging Potential of Fruit-Based Carbon Dots. Nanomaterials, 9(2), 199. https://doi.org/10.3390/nano9020199

DuMez, R., Miyanji, E. H., Corado-Santiago, L., Barrameda, B., Zhou, Y., Hettiarachchi, S. D., Leblanc, R. M., & Skromne, I. (2020). Carbon dots deposition in adult bones reveal areas of growth, injury and regeneration. Pharmacology and Toxicology. https://doi.org/https://doi.org/10.1101/2020.10.13.338426

Emam, A. N., Loutfy, S. A., Mostafa, A. A., Awad, H., & Mohamed, M. B. (2017). Cyto-toxicity, biocompatibility and cellular response of carbon dots–plasmonic based nano-hybrids for bioimaging. RSC Advances, 7(38), 23502–23514. https://doi.org/10.1039/C7RA01423F

Galbusera, L., Bellement-Theroue, G., Urchueguia, A., Julou, T., & van Nimwegen, E. (2020). Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria. PLOS ONE, 15(10), e0240233. https://doi.org/10.1371/journal.pone.0240233

Gao, D., Barber, P. R., Chacko, J. V., Kader Sagar, M. A., Rueden, C. T., Grislis, A. R., Hiner, M. C., & Eliceiri, K. W. (2020). FLIMJ: An open-source ImageJ toolkit for fluorescence lifetime image data analysis. PLOS ONE, 15(12), e0238327. https://doi.org/10.1371/journal.pone.0238327

Gedda, G., Bhupathi, A., & Balaji Gupta Tiruveedhi, V. L. N. (2021). Naturally Derived Carbon Dots as Bioimaging Agents. In Biomechanics and Functional Tissue Engineering. IntechOpen. https://doi.org/10.5772/intechopen.96912

Hardianti, M., Yuniarto, A., & Hasimun, P. (2021). Review: Zebrafish (Danio Rerio) Sebagai Model Obesitas dan Diabetes Melitus Tipe 2. Jurnal Sains Farmasi & Klinis, 8(2), 69. https://doi.org/10.25077/jsfk.8.2.69-79.2021

He, H., Zheng, X., Liu, S., Zheng, M., Xie, Z., Wang, Y., Yu, M., & Shuai, X. (2018). Diketopyrrolopyrrole-based carbon dots for photodynamic therapy. Nanoscale, 10(23), 10991–10998. https://doi.org/10.1039/C8NR02643B

He, M., Zhang, J., Wang, H., Kong, Y., Xiao, Y., & Xu, W. (2018). Material and Optical Properties of Fluorescent Carbon Quantum Dots Fabricated from Lemon Juice via Hydrothermal Reaction. Nanoscale Research Letters, 13(1), 175. https://doi.org/10.1186/s11671-018-2581-7

Ignatius, M. S., & Langenau, D. M. (2009). Zebrafish as a Model for Cancer Self-Renewal. Zebrafish, 6(4), 377–387. https://doi.org/10.1089/zeb.2009.0610

Isnaeni, Suliyanti, M. M., Shiddiq, M., & Sambudi, N. S. (2019). Optical Properties of Toluene-soluble Carbon Dots Prepared from Laser-ablated Coconut Fiber. Makara Journal of Science, 23(4), 187–192. https://doi.org/10.7454/mss.v23i4.10639

Jakic, B., Buszko, M., Cappellano, G., & Wick, G. (2017). Elevated sodium leads to the increased expression of HSP60 and induces apoptosis in HUVECs. PLOS ONE, 12(6), e0179383. https://doi.org/10.1371/journal.pone.0179383

Jiang, K., Sun, S., Zhang, L., Lu, Y., Wu, A., Cai, C., & Lin, H. (2015). Red, Green, and Blue Luminescence by Carbon Dots: Full-Color Emission Tuning and Multicolor Cellular Imaging. Angewandte Chemie International Edition, 54(18), 5360–5363. https://doi.org/10.1002/anie.201501193

Jiang, Z., Li, L., Huang, H., He, W., & Ming, W. (2022). Progress in Laser Ablation and Biological Synthesis Processes: “Top-Down” and “Bottom-Up” Approaches for the Green Synthesis of Au/Ag Nanoparticles. International Journal of Molecular Sciences, 23(23), 14658. https://doi.org/10.3390/ijms232314658

Kaczmarek, A., Hoffman, J., Morgiel, J., Mościcki, T., Stobiński, L., Szymański, Z., & Małolepszy, A. (2021). Luminescent Carbon Dots Synthesized by the Laser Ablation of Graphite in Polyethylenimine and Ethylenediamine. Materials, 14(4), 729. https://doi.org/10.3390/ma14040729

Kang, Y.-F., Li, Y.-H., Fang, Y.-W., Xu, Y., Wei, X.-M., & Yin, X.-B. (2015). Carbon Quantum Dots for Zebrafish Fluorescence Imaging. Scientific Reports, 5(1), 11835. https://doi.org/10.1038/srep11835

Khan, S., Newport, D., & Le Calvé, S. (2019). Development of a Toluene Detector Based on Deep UV Absorption Spectrophotometry Using Glass and Aluminum Capillary Tube Gas Cells with a LED Source. Micromachines, 10(3), 193. https://doi.org/10.3390/mi10030193

Kim, M., Osone, S., Kim, T., Higashi, H., & Seto, T. (2017). Synthesis of Nanoparticles by Laser Ablation: A Review. KONA Powder and Particle Journal, 34, 80–90. https://doi.org/10.14356/kona.2017009

Kumar, Y. R., Deshmukh, K., Sadasivuni, K. K., & Pasha, S. K. K. (2020). Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: a review. RSC Advances, 10(40), 23861–23898. https://doi.org/10.1039/D0RA03938A

Li, H., Yan, X., Kong, D., Jin, R., Sun, C., Du, D., Lin, Y., & Lu, G. (2020). Recent advances in carbon dots for bioimaging applications. Nanoscale Horizons, 5(2), 218–234. https://doi.org/10.1039/c9nh00476a

Li, S., Skromne, I., Peng, Z., Dallman, J., Al-Youbi, A. O., Bashammakh, A. S., El-Shahawi, M. S., & Leblanc, R. M. (2016). “Dark” carbon dots specifically “light-up” calcified zebrafish bones. Journal of Materials Chemistry B, 4(46), 7398–7405. https://doi.org/10.1039/C6TB02241C

Liang, W., Bunker, C. E., & Sun, Y. P. (2020). Carbon Dots: Zero-Dimensional Carbon Allotrope with Unique Photoinduced Redox Characteristics. ACS Omega, 5(2), 965–971. https://doi.org/10.1021/acsomega.9b03669

Mizuno, T., Hase, E., Minamikawa, T., Tokizane, Y., Oe, R., Koresawa, H., Yamamoto, H., & Yasui, T. (2021). Full-field fluorescence lifetime dual-comb microscopy using spectral mapping and frequency multiplexing of dual-comb optical beats. Science Advances, 7(1). https://doi.org/10.1126/sciadv.abd2102

Nozeret, K., Boucharlat, A., Agou, F., & Buddelmeijer, N. (2019). A sensitive fluorescence-based assay to monitor enzymatic activity of the essential integral membrane protein Apolipoprotein N-acyltransferase (Lnt). Scientific Reports, 9(1), 15978. https://doi.org/10.1038/s41598-019-52106-8

Pal, T., Mohiyuddin, S., & Packirisamy, G. (2018). Facile and Green Synthesis of Multicolor Fluorescence Carbon Dots from Curcumin: In Vitro and in Vivo Bioimaging and Other Applications. ACS Omega, 3(1), 831–843. https://doi.org/10.1021/acsomega.7b01323

Peng, Z., Ji, C., Zhou, Y., Zhao, T., & Leblanc, R. M. (2020). Polyethylene glycol (PEG) derived carbon dots: Preparation and applications. Applied Materials Today, 20, 100677. https://doi.org/10.1016/j.apmt.2020.100677

Phan, L. M. T., & Cho, S. (2022). Fluorescent Carbon Dot-Supported Imaging-Based Biomedicine: A Comprehensive Review. Bioinorganic Chemistry and Applications, 2022, 1–32. https://doi.org/10.1155/2022/9303703

Phukan, K., Sarma, R. R., Dash, S., Devi, R., & Chowdhury, D. (2022). Carbon dot based nucleus targeted fluorescence imaging and detection of nuclear hydrogen peroxide in living cells. Nanoscale Advances, 4(1), 138–149. https://doi.org/10.1039/D1NA00617G

Putro, P. A., Roza, L., & Isnaeni, I. (2019). THE EFFECT OF POLY (ETHYLENE GLYCOL) ON THE PHOTOLUMINESCENCE PROPERTIES OF CARBON DOTS FROM CASSAVA PEELS SYNTHESIZED BY HYDROTHERMAL METHODS. Spektra: Jurnal Fisika Dan Aplikasinya, 4(1), 11–20. https://doi.org/10.21009/SPEKTRA.041.02

Reyes, D., Camacho, M., Camacho, M., Mayorga, M., Weathers, D., Salamo, G., Wang, Z., & Neogi, A. (2016). Laser Ablated Carbon Nanodots for Light Emission. Nanoscale Research Letters, 11(1), 424. https://doi.org/10.1186/s11671-016-1638-8

Rishi, K., & Narinder, R. (2015). Particle Size and Shape Analysis using Imagej with Customized Tools for Segmentation of Particles. International Journal of Engineering Research And, V4(11). https://doi.org/10.17577/IJERTV4IS110211

Riyanto, A. (2019). Preparasi dan Karakteristik Fisis Nanopartikel Magnetit (Fe3O4). Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat, 16(1), 35. https://doi.org/10.20527/flux.v16i1.5524

Silic, M. R., & Zhang, G. (2021). Tissue-specific modification of cellular bioelectrical activities using the chemogenetic tool, DREADD, in zebrafish. Developmental Biology. https://doi.org/10.1101/2021.06.22.449481

Unnikrishnan, B., Wu, R.-S., Wei, S.-C., Huang, C.-C., & Chang, H.-T. (2020). Fluorescent Carbon Dots for Selective Labeling of Subcellular Organelles. ACS Omega, 5(20), 11248–11261. https://doi.org/10.1021/acsomega.9b04301

Vinsiah, R., & Suharman, A. (2014). Pembuatan Karbon Aktif dari Cangkang Kulit Buah Karet (Hevea brasilliensis). Pendidikan Kimia Universitas Sriwijaya, 189–199.

Wang, R., Gu, W., Liu, Z., Liu, Y., Ma, G., & Wei, J. (2021). Simple and Green Synthesis of Carbonized Polymer dots from Nylon 66 Waste Fibers and its Potential Application. ACS Omega, 6(48), 32888–32895. https://doi.org/10.1021/acsomega.1c04808

Wang, X., Cao, L., Lu, F., Meziani, M. J., Li, H., Qi, G., Zhou, B., Harruff, B. A., Kermarrec, F., & Sun, Y.-P. (2009). Photoinduced electron transfers with carbon dots. Chemical Communications, 25, 3774. https://doi.org/10.1039/b906252a

Wilson, A., & Baietto, M. (2009). Applications and Advances in Electronic-Nose Technologies. Sensors, 9(7), 5099–5148. https://doi.org/10.3390/s90705099

Wu, Y., Li, C., van der Mei, H. C., Busscher, H. J., & Ren, Y. (2021). Carbon Quantum Dots Derived from Different Carbon Sources for Antibacterial Applications. Antibiotics, 10(6), 623. https://doi.org/10.3390/antibiotics10060623

Yuniarto, A., Sukandar, E. Y., Fidrianny, I., & Adnyana, I. K. (2017). Aplikasi Zebrafish (Danio rerio) pada Beberapa Model Penyakit Eksperimental. MPI (Media Pharmaceutica Indonesiana), 1(3), 116–126. https://doi.org/10.24123/mpi.v1i3.215

Zhang, Q., Wang, R., Feng, B., Zhong, X., & Ostrikov, K. (2021). Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation. Nature Communications, 12(1), 6856. https://doi.org/10.1038/s41467-021-27071-4

Downloads

Published

2023-05-06

How to Cite

Jumardin, J., Maddu, A. ., Santoso, K. ., & Isnaeni, I. (2023). Synthesis of Fluorescent Carbon Dots (CDs) Using Laser Ablation Method for Bioimaging Application. JURNAL ILMU FISIKA, 15(2), 91–105. https://doi.org/10.25077/jif.15.2.91-105.2023

Issue

Section

Research Article

Citation Check