Synthesis of Fluorescent Carbon Dots (CDs) Using Laser Ablation Method for Bioimaging Application


  • Jumardin Jumardin Department of Physics, Faculty of Sciences and Technology, Alauddin State Islamic University of Makassar Gowa, 92113, Indonesia
  • Akhiruddin Maddu Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia
  • Kokoeh Santoso Department of Anatomy, Physiology and Pharmacology, School of Veterinary and Biomedical, IPB University Bogor, 16680, Indonesia
  • Isnaeni Isnaeni Research Center for Photonics, National Research and Innovation Agency (Badan Riset dan Inovasi Nasional, BRIN) BJ Habibie Science and Technology Park, Banten 15314, Indonesia



Carbon dots, Laser ablation, Fluoresccent, Bioimaging


Carbon Dots (CDs) were synthesized using laser ablation by focusing the laser beam on carbon (Tea) material in colloid (CH3) for 3 hours. UV-Vis spectroscopic and fluorometric characterization showed absorption of the wavelength peaks caused by the control treatment and after laser ablation and coating using Poly Ethylene Glycol (PEG400). The excitation and emission energies are formulations of CDs absorbance wavelength and fluorescence intensity. The absorbance coefficient is obtained based on the absorbance value of the cuvette thickness. The transmittance value (T) is obtained based on the absorption coefficient multiplied by 100%. CD fluorescence wavelength based on control parameters was 489 nm. After laser ablation was 496 nm, and after coating was 511 nm. CDs morphology and size characteristics are 4 nm to 10 nm based on TEM measurements. Fluorescence analysis for bioimaging applications on the luminescence intensity value of internalized blue CDs in zebrafish eye organs. The average intensity of CDs in the eye organs, gill, intestinal, dorsal, and tail injection points was 88.15 %, 91.58 %, 92.76 %, and 0.00 %.


Download data is not yet available.


Aji, M. P., Susanto, Wiguna, P. A., & Sulhadi. (2017). Facile synthesis of luminescent carbon dots from mangosteen peel by pyrolysis method. Journal of Theoretical and Applied Physics, 11(2), 119–126.

Alkian, I., Sutanto, H., & Hadiyanto. (2022). Quantum yield optimization of carbon dots using response surface methodology and its application as control of Fe 3+ ion levels in drinking water. Materials Research Express, 9(1), 015702.

Biswal, M. R., & Bhatia, S. (2021). Carbon Dot Nanoparticles: Exploring the Potential Use for Gene Delivery in Ophthalmic Diseases. Nanomaterials, 11(4), 935.

Blackburn, J. S., Liu, S., Raimondi, A. R., Ignatius, M. S., Salthouse, C. D., & Langenau, D. M. (2011). High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope. Nature Protocols, 6(2), 229–241.

Dal, N. K., Kocere, A., Wohlmann, J., Van Herck, S., Bauer, T. A., Resseguier, J., Bagherifam, S., Hyldmo, H., Barz, M., De Geest, B. G., & Fenaroli, F. (2020). Zebrafish Embryos Allow Prediction of Nanoparticle Circulation Times in Mice and Facilitate Quantification of Nanoparticle–Cell Interactions. Small, 16(5), 1906719.

Dias, C., Vasimalai, N., P. Sárria, M., Pinheiro, I., Vilas-Boas, V., Peixoto, J., & Espiña, B. (2019). Biocompatibility and Bioimaging Potential of Fruit-Based Carbon Dots. Nanomaterials, 9(2), 199.

DuMez, R., Miyanji, E. H., Corado-Santiago, L., Barrameda, B., Zhou, Y., Hettiarachchi, S. D., Leblanc, R. M., & Skromne, I. (2020). Carbon dots deposition in adult bones reveal areas of growth, injury and regeneration. Pharmacology and Toxicology.

Emam, A. N., Loutfy, S. A., Mostafa, A. A., Awad, H., & Mohamed, M. B. (2017). Cyto-toxicity, biocompatibility and cellular response of carbon dots–plasmonic based nano-hybrids for bioimaging. RSC Advances, 7(38), 23502–23514.

Galbusera, L., Bellement-Theroue, G., Urchueguia, A., Julou, T., & van Nimwegen, E. (2020). Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria. PLOS ONE, 15(10), e0240233.

Gao, D., Barber, P. R., Chacko, J. V., Kader Sagar, M. A., Rueden, C. T., Grislis, A. R., Hiner, M. C., & Eliceiri, K. W. (2020). FLIMJ: An open-source ImageJ toolkit for fluorescence lifetime image data analysis. PLOS ONE, 15(12), e0238327.

Gedda, G., Bhupathi, A., & Balaji Gupta Tiruveedhi, V. L. N. (2021). Naturally Derived Carbon Dots as Bioimaging Agents. In Biomechanics and Functional Tissue Engineering. IntechOpen.

Hardianti, M., Yuniarto, A., & Hasimun, P. (2021). Review: Zebrafish (Danio Rerio) Sebagai Model Obesitas dan Diabetes Melitus Tipe 2. Jurnal Sains Farmasi & Klinis, 8(2), 69.

He, H., Zheng, X., Liu, S., Zheng, M., Xie, Z., Wang, Y., Yu, M., & Shuai, X. (2018). Diketopyrrolopyrrole-based carbon dots for photodynamic therapy. Nanoscale, 10(23), 10991–10998.

He, M., Zhang, J., Wang, H., Kong, Y., Xiao, Y., & Xu, W. (2018). Material and Optical Properties of Fluorescent Carbon Quantum Dots Fabricated from Lemon Juice via Hydrothermal Reaction. Nanoscale Research Letters, 13(1), 175.

Ignatius, M. S., & Langenau, D. M. (2009). Zebrafish as a Model for Cancer Self-Renewal. Zebrafish, 6(4), 377–387.

Isnaeni, Suliyanti, M. M., Shiddiq, M., & Sambudi, N. S. (2019). Optical Properties of Toluene-soluble Carbon Dots Prepared from Laser-ablated Coconut Fiber. Makara Journal of Science, 23(4), 187–192.

Jakic, B., Buszko, M., Cappellano, G., & Wick, G. (2017). Elevated sodium leads to the increased expression of HSP60 and induces apoptosis in HUVECs. PLOS ONE, 12(6), e0179383.

Jiang, K., Sun, S., Zhang, L., Lu, Y., Wu, A., Cai, C., & Lin, H. (2015). Red, Green, and Blue Luminescence by Carbon Dots: Full-Color Emission Tuning and Multicolor Cellular Imaging. Angewandte Chemie International Edition, 54(18), 5360–5363.

Jiang, Z., Li, L., Huang, H., He, W., & Ming, W. (2022). Progress in Laser Ablation and Biological Synthesis Processes: “Top-Down” and “Bottom-Up” Approaches for the Green Synthesis of Au/Ag Nanoparticles. International Journal of Molecular Sciences, 23(23), 14658.

Kaczmarek, A., Hoffman, J., Morgiel, J., Mościcki, T., Stobiński, L., Szymański, Z., & Małolepszy, A. (2021). Luminescent Carbon Dots Synthesized by the Laser Ablation of Graphite in Polyethylenimine and Ethylenediamine. Materials, 14(4), 729.

Kang, Y.-F., Li, Y.-H., Fang, Y.-W., Xu, Y., Wei, X.-M., & Yin, X.-B. (2015). Carbon Quantum Dots for Zebrafish Fluorescence Imaging. Scientific Reports, 5(1), 11835.

Khan, S., Newport, D., & Le Calvé, S. (2019). Development of a Toluene Detector Based on Deep UV Absorption Spectrophotometry Using Glass and Aluminum Capillary Tube Gas Cells with a LED Source. Micromachines, 10(3), 193.

Kim, M., Osone, S., Kim, T., Higashi, H., & Seto, T. (2017). Synthesis of Nanoparticles by Laser Ablation: A Review. KONA Powder and Particle Journal, 34, 80–90.

Kumar, Y. R., Deshmukh, K., Sadasivuni, K. K., & Pasha, S. K. K. (2020). Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: a review. RSC Advances, 10(40), 23861–23898.

Li, H., Yan, X., Kong, D., Jin, R., Sun, C., Du, D., Lin, Y., & Lu, G. (2020). Recent advances in carbon dots for bioimaging applications. Nanoscale Horizons, 5(2), 218–234.

Li, S., Skromne, I., Peng, Z., Dallman, J., Al-Youbi, A. O., Bashammakh, A. S., El-Shahawi, M. S., & Leblanc, R. M. (2016). “Dark” carbon dots specifically “light-up” calcified zebrafish bones. Journal of Materials Chemistry B, 4(46), 7398–7405.

Liang, W., Bunker, C. E., & Sun, Y. P. (2020). Carbon Dots: Zero-Dimensional Carbon Allotrope with Unique Photoinduced Redox Characteristics. ACS Omega, 5(2), 965–971.

Mizuno, T., Hase, E., Minamikawa, T., Tokizane, Y., Oe, R., Koresawa, H., Yamamoto, H., & Yasui, T. (2021). Full-field fluorescence lifetime dual-comb microscopy using spectral mapping and frequency multiplexing of dual-comb optical beats. Science Advances, 7(1).

Nozeret, K., Boucharlat, A., Agou, F., & Buddelmeijer, N. (2019). A sensitive fluorescence-based assay to monitor enzymatic activity of the essential integral membrane protein Apolipoprotein N-acyltransferase (Lnt). Scientific Reports, 9(1), 15978.

Pal, T., Mohiyuddin, S., & Packirisamy, G. (2018). Facile and Green Synthesis of Multicolor Fluorescence Carbon Dots from Curcumin: In Vitro and in Vivo Bioimaging and Other Applications. ACS Omega, 3(1), 831–843.

Peng, Z., Ji, C., Zhou, Y., Zhao, T., & Leblanc, R. M. (2020). Polyethylene glycol (PEG) derived carbon dots: Preparation and applications. Applied Materials Today, 20, 100677.

Phan, L. M. T., & Cho, S. (2022). Fluorescent Carbon Dot-Supported Imaging-Based Biomedicine: A Comprehensive Review. Bioinorganic Chemistry and Applications, 2022, 1–32.

Phukan, K., Sarma, R. R., Dash, S., Devi, R., & Chowdhury, D. (2022). Carbon dot based nucleus targeted fluorescence imaging and detection of nuclear hydrogen peroxide in living cells. Nanoscale Advances, 4(1), 138–149.


Reyes, D., Camacho, M., Camacho, M., Mayorga, M., Weathers, D., Salamo, G., Wang, Z., & Neogi, A. (2016). Laser Ablated Carbon Nanodots for Light Emission. Nanoscale Research Letters, 11(1), 424.

Rishi, K., & Narinder, R. (2015). Particle Size and Shape Analysis using Imagej with Customized Tools for Segmentation of Particles. International Journal of Engineering Research And, V4(11).

Riyanto, A. (2019). Preparasi dan Karakteristik Fisis Nanopartikel Magnetit (Fe3O4). Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat, 16(1), 35.

Silic, M. R., & Zhang, G. (2021). Tissue-specific modification of cellular bioelectrical activities using the chemogenetic tool, DREADD, in zebrafish. Developmental Biology.

Unnikrishnan, B., Wu, R.-S., Wei, S.-C., Huang, C.-C., & Chang, H.-T. (2020). Fluorescent Carbon Dots for Selective Labeling of Subcellular Organelles. ACS Omega, 5(20), 11248–11261.

Vinsiah, R., & Suharman, A. (2014). Pembuatan Karbon Aktif dari Cangkang Kulit Buah Karet (Hevea brasilliensis). Pendidikan Kimia Universitas Sriwijaya, 189–199.

Wang, R., Gu, W., Liu, Z., Liu, Y., Ma, G., & Wei, J. (2021). Simple and Green Synthesis of Carbonized Polymer dots from Nylon 66 Waste Fibers and its Potential Application. ACS Omega, 6(48), 32888–32895.

Wang, X., Cao, L., Lu, F., Meziani, M. J., Li, H., Qi, G., Zhou, B., Harruff, B. A., Kermarrec, F., & Sun, Y.-P. (2009). Photoinduced electron transfers with carbon dots. Chemical Communications, 25, 3774.

Wilson, A., & Baietto, M. (2009). Applications and Advances in Electronic-Nose Technologies. Sensors, 9(7), 5099–5148.

Wu, Y., Li, C., van der Mei, H. C., Busscher, H. J., & Ren, Y. (2021). Carbon Quantum Dots Derived from Different Carbon Sources for Antibacterial Applications. Antibiotics, 10(6), 623.

Yuniarto, A., Sukandar, E. Y., Fidrianny, I., & Adnyana, I. K. (2017). Aplikasi Zebrafish (Danio rerio) pada Beberapa Model Penyakit Eksperimental. MPI (Media Pharmaceutica Indonesiana), 1(3), 116–126.

Zhang, Q., Wang, R., Feng, B., Zhong, X., & Ostrikov, K. (2021). Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation. Nature Communications, 12(1), 6856.




How to Cite

Jumardin, J., Maddu, A. ., Santoso, K. ., & Isnaeni, I. (2023). Synthesis of Fluorescent Carbon Dots (CDs) Using Laser Ablation Method for Bioimaging Application. JURNAL ILMU FISIKA, 15(2), 91–105.



Research Article

Citation Check