Synthesis of Fluorescent Carbon Dots (CDs) Using Laser Ablation Method for Bioimaging Application
DOI:
https://doi.org/10.25077/jif.15.2.91-105.2023Keywords:
Carbon dots, Laser ablation, Fluoresccent, BioimagingAbstract
Carbon Dots (CDs) were synthesized using laser ablation by focusing the laser beam on carbon (Tea) material in colloid (CH3) for 3 hours. UV-Vis spectroscopic and fluorometric characterization showed absorption of the wavelength peaks caused by the control treatment and after laser ablation and coating using Poly Ethylene Glycol (PEG400). The excitation and emission energies are formulations of CDs absorbance wavelength and fluorescence intensity. The absorbance coefficient is obtained based on the absorbance value of the cuvette thickness. The transmittance value (T) is obtained based on the absorption coefficient multiplied by 100%. CD fluorescence wavelength based on control parameters was 489 nm. After laser ablation was 496 nm, and after coating was 511 nm. CDs morphology and size characteristics are 4 nm to 10 nm based on TEM measurements. Fluorescence analysis for bioimaging applications on the luminescence intensity value of internalized blue CDs in zebrafish eye organs. The average intensity of CDs in the eye organs, gill, intestinal, dorsal, and tail injection points was 88.15 %, 91.58 %, 92.76 %, and 0.00 %.
Downloads
References
Aji, M. P., Susanto, Wiguna, P. A., & Sulhadi. (2017). Facile synthesis of luminescent carbon dots from mangosteen peel by pyrolysis method. Journal of Theoretical and Applied Physics, 11(2), 119–126. https://doi.org/10.1007/s40094-017-0250-3 DOI: https://doi.org/10.1007/s40094-017-0250-3
Alkian, I., Sutanto, H., & Hadiyanto. (2022). Quantum yield optimization of carbon dots using response surface methodology and its application as control of Fe 3+ ion levels in drinking water. Materials Research Express, 9(1), 015702. https://doi.org/10.1088/2053-1591/ac3f60 DOI: https://doi.org/10.1088/2053-1591/ac3f60
Biswal, M. R., & Bhatia, S. (2021). Carbon Dot Nanoparticles: Exploring the Potential Use for Gene Delivery in Ophthalmic Diseases. Nanomaterials, 11(4), 935. https://doi.org/10.3390/nano11040935 DOI: https://doi.org/10.3390/nano11040935
Blackburn, J. S., Liu, S., Raimondi, A. R., Ignatius, M. S., Salthouse, C. D., & Langenau, D. M. (2011). High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope. Nature Protocols, 6(2), 229–241. https://doi.org/10.1038/nprot.2010.170 DOI: https://doi.org/10.1038/nprot.2010.170
Dal, N. K., Kocere, A., Wohlmann, J., Van Herck, S., Bauer, T. A., Resseguier, J., Bagherifam, S., Hyldmo, H., Barz, M., De Geest, B. G., & Fenaroli, F. (2020). Zebrafish Embryos Allow Prediction of Nanoparticle Circulation Times in Mice and Facilitate Quantification of Nanoparticle–Cell Interactions. Small, 16(5), 1906719. https://doi.org/10.1002/smll.201906719 DOI: https://doi.org/10.1002/smll.201906719
Dias, C., Vasimalai, N., P. Sárria, M., Pinheiro, I., Vilas-Boas, V., Peixoto, J., & Espiña, B. (2019). Biocompatibility and Bioimaging Potential of Fruit-Based Carbon Dots. Nanomaterials, 9(2), 199. https://doi.org/10.3390/nano9020199 DOI: https://doi.org/10.3390/nano9020199
DuMez, R., Miyanji, E. H., Corado-Santiago, L., Barrameda, B., Zhou, Y., Hettiarachchi, S. D., Leblanc, R. M., & Skromne, I. (2020). Carbon dots deposition in adult bones reveal areas of growth, injury and regeneration. Pharmacology and Toxicology. https://doi.org/https://doi.org/10.1101/2020.10.13.338426 DOI: https://doi.org/10.1101/2020.10.13.338426
Emam, A. N., Loutfy, S. A., Mostafa, A. A., Awad, H., & Mohamed, M. B. (2017). Cyto-toxicity, biocompatibility and cellular response of carbon dots–plasmonic based nano-hybrids for bioimaging. RSC Advances, 7(38), 23502–23514. https://doi.org/10.1039/C7RA01423F DOI: https://doi.org/10.1039/C7RA01423F
Galbusera, L., Bellement-Theroue, G., Urchueguia, A., Julou, T., & van Nimwegen, E. (2020). Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria. PLOS ONE, 15(10), e0240233. https://doi.org/10.1371/journal.pone.0240233 DOI: https://doi.org/10.1371/journal.pone.0240233
Gao, D., Barber, P. R., Chacko, J. V., Kader Sagar, M. A., Rueden, C. T., Grislis, A. R., Hiner, M. C., & Eliceiri, K. W. (2020). FLIMJ: An open-source ImageJ toolkit for fluorescence lifetime image data analysis. PLOS ONE, 15(12), e0238327. https://doi.org/10.1371/journal.pone.0238327 DOI: https://doi.org/10.1371/journal.pone.0238327
Gedda, G., Bhupathi, A., & Balaji Gupta Tiruveedhi, V. L. N. (2021). Naturally Derived Carbon Dots as Bioimaging Agents. In Biomechanics and Functional Tissue Engineering. IntechOpen. https://doi.org/10.5772/intechopen.96912 DOI: https://doi.org/10.5772/intechopen.96912
Hardianti, M., Yuniarto, A., & Hasimun, P. (2021). Review: Zebrafish (Danio Rerio) Sebagai Model Obesitas dan Diabetes Melitus Tipe 2. Jurnal Sains Farmasi & Klinis, 8(2), 69. https://doi.org/10.25077/jsfk.8.2.69-79.2021 DOI: https://doi.org/10.25077/jsfk.8.2.69-79.2021
He, H., Zheng, X., Liu, S., Zheng, M., Xie, Z., Wang, Y., Yu, M., & Shuai, X. (2018). Diketopyrrolopyrrole-based carbon dots for photodynamic therapy. Nanoscale, 10(23), 10991–10998. https://doi.org/10.1039/C8NR02643B DOI: https://doi.org/10.1039/C8NR02643B
He, M., Zhang, J., Wang, H., Kong, Y., Xiao, Y., & Xu, W. (2018). Material and Optical Properties of Fluorescent Carbon Quantum Dots Fabricated from Lemon Juice via Hydrothermal Reaction. Nanoscale Research Letters, 13(1), 175. https://doi.org/10.1186/s11671-018-2581-7 DOI: https://doi.org/10.1186/s11671-018-2581-7
Ignatius, M. S., & Langenau, D. M. (2009). Zebrafish as a Model for Cancer Self-Renewal. Zebrafish, 6(4), 377–387. https://doi.org/10.1089/zeb.2009.0610 DOI: https://doi.org/10.1089/zeb.2009.0610
Isnaeni, Suliyanti, M. M., Shiddiq, M., & Sambudi, N. S. (2019). Optical Properties of Toluene-soluble Carbon Dots Prepared from Laser-ablated Coconut Fiber. Makara Journal of Science, 23(4), 187–192. https://doi.org/10.7454/mss.v23i4.10639 DOI: https://doi.org/10.7454/mss.v23i4.10639
Jakic, B., Buszko, M., Cappellano, G., & Wick, G. (2017). Elevated sodium leads to the increased expression of HSP60 and induces apoptosis in HUVECs. PLOS ONE, 12(6), e0179383. https://doi.org/10.1371/journal.pone.0179383 DOI: https://doi.org/10.1371/journal.pone.0179383
Jiang, K., Sun, S., Zhang, L., Lu, Y., Wu, A., Cai, C., & Lin, H. (2015). Red, Green, and Blue Luminescence by Carbon Dots: Full-Color Emission Tuning and Multicolor Cellular Imaging. Angewandte Chemie International Edition, 54(18), 5360–5363. https://doi.org/10.1002/anie.201501193 DOI: https://doi.org/10.1002/anie.201501193
Jiang, Z., Li, L., Huang, H., He, W., & Ming, W. (2022). Progress in Laser Ablation and Biological Synthesis Processes: “Top-Down” and “Bottom-Up” Approaches for the Green Synthesis of Au/Ag Nanoparticles. International Journal of Molecular Sciences, 23(23), 14658. https://doi.org/10.3390/ijms232314658 DOI: https://doi.org/10.3390/ijms232314658
Kaczmarek, A., Hoffman, J., Morgiel, J., Mościcki, T., Stobiński, L., Szymański, Z., & Małolepszy, A. (2021). Luminescent Carbon Dots Synthesized by the Laser Ablation of Graphite in Polyethylenimine and Ethylenediamine. Materials, 14(4), 729. https://doi.org/10.3390/ma14040729 DOI: https://doi.org/10.3390/ma14040729
Kang, Y.-F., Li, Y.-H., Fang, Y.-W., Xu, Y., Wei, X.-M., & Yin, X.-B. (2015). Carbon Quantum Dots for Zebrafish Fluorescence Imaging. Scientific Reports, 5(1), 11835. https://doi.org/10.1038/srep11835 DOI: https://doi.org/10.1038/srep11835
Khan, S., Newport, D., & Le Calvé, S. (2019). Development of a Toluene Detector Based on Deep UV Absorption Spectrophotometry Using Glass and Aluminum Capillary Tube Gas Cells with a LED Source. Micromachines, 10(3), 193. https://doi.org/10.3390/mi10030193 DOI: https://doi.org/10.3390/mi10030193
Kim, M., Osone, S., Kim, T., Higashi, H., & Seto, T. (2017). Synthesis of Nanoparticles by Laser Ablation: A Review. KONA Powder and Particle Journal, 34, 80–90. https://doi.org/10.14356/kona.2017009 DOI: https://doi.org/10.14356/kona.2017009
Kumar, Y. R., Deshmukh, K., Sadasivuni, K. K., & Pasha, S. K. K. (2020). Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: a review. RSC Advances, 10(40), 23861–23898. https://doi.org/10.1039/D0RA03938A DOI: https://doi.org/10.1039/D0RA03938A
Li, H., Yan, X., Kong, D., Jin, R., Sun, C., Du, D., Lin, Y., & Lu, G. (2020). Recent advances in carbon dots for bioimaging applications. Nanoscale Horizons, 5(2), 218–234. https://doi.org/10.1039/c9nh00476a DOI: https://doi.org/10.1039/C9NH00476A
Li, S., Skromne, I., Peng, Z., Dallman, J., Al-Youbi, A. O., Bashammakh, A. S., El-Shahawi, M. S., & Leblanc, R. M. (2016). “Dark” carbon dots specifically “light-up” calcified zebrafish bones. Journal of Materials Chemistry B, 4(46), 7398–7405. https://doi.org/10.1039/C6TB02241C DOI: https://doi.org/10.1039/C6TB02241C
Liang, W., Bunker, C. E., & Sun, Y. P. (2020). Carbon Dots: Zero-Dimensional Carbon Allotrope with Unique Photoinduced Redox Characteristics. ACS Omega, 5(2), 965–971. https://doi.org/10.1021/acsomega.9b03669 DOI: https://doi.org/10.1021/acsomega.9b03669
Mizuno, T., Hase, E., Minamikawa, T., Tokizane, Y., Oe, R., Koresawa, H., Yamamoto, H., & Yasui, T. (2021). Full-field fluorescence lifetime dual-comb microscopy using spectral mapping and frequency multiplexing of dual-comb optical beats. Science Advances, 7(1). https://doi.org/10.1126/sciadv.abd2102 DOI: https://doi.org/10.1126/sciadv.abd2102
Nozeret, K., Boucharlat, A., Agou, F., & Buddelmeijer, N. (2019). A sensitive fluorescence-based assay to monitor enzymatic activity of the essential integral membrane protein Apolipoprotein N-acyltransferase (Lnt). Scientific Reports, 9(1), 15978. https://doi.org/10.1038/s41598-019-52106-8 DOI: https://doi.org/10.1038/s41598-019-52106-8
Pal, T., Mohiyuddin, S., & Packirisamy, G. (2018). Facile and Green Synthesis of Multicolor Fluorescence Carbon Dots from Curcumin: In Vitro and in Vivo Bioimaging and Other Applications. ACS Omega, 3(1), 831–843. https://doi.org/10.1021/acsomega.7b01323 DOI: https://doi.org/10.1021/acsomega.7b01323
Peng, Z., Ji, C., Zhou, Y., Zhao, T., & Leblanc, R. M. (2020). Polyethylene glycol (PEG) derived carbon dots: Preparation and applications. Applied Materials Today, 20, 100677. https://doi.org/10.1016/j.apmt.2020.100677 DOI: https://doi.org/10.1016/j.apmt.2020.100677
Phan, L. M. T., & Cho, S. (2022). Fluorescent Carbon Dot-Supported Imaging-Based Biomedicine: A Comprehensive Review. Bioinorganic Chemistry and Applications, 2022, 1–32. https://doi.org/10.1155/2022/9303703 DOI: https://doi.org/10.1155/2022/9303703
Phukan, K., Sarma, R. R., Dash, S., Devi, R., & Chowdhury, D. (2022). Carbon dot based nucleus targeted fluorescence imaging and detection of nuclear hydrogen peroxide in living cells. Nanoscale Advances, 4(1), 138–149. https://doi.org/10.1039/D1NA00617G DOI: https://doi.org/10.1039/D1NA00617G
Putro, P. A., Roza, L., & Isnaeni, I. (2019). THE EFFECT OF POLY (ETHYLENE GLYCOL) ON THE PHOTOLUMINESCENCE PROPERTIES OF CARBON DOTS FROM CASSAVA PEELS SYNTHESIZED BY HYDROTHERMAL METHODS. Spektra: Jurnal Fisika Dan Aplikasinya, 4(1), 11–20. https://doi.org/10.21009/SPEKTRA.041.02 DOI: https://doi.org/10.21009/SPEKTRA.041.02
Reyes, D., Camacho, M., Camacho, M., Mayorga, M., Weathers, D., Salamo, G., Wang, Z., & Neogi, A. (2016). Laser Ablated Carbon Nanodots for Light Emission. Nanoscale Research Letters, 11(1), 424. https://doi.org/10.1186/s11671-016-1638-8 DOI: https://doi.org/10.1186/s11671-016-1638-8
Rishi, K., & Narinder, R. (2015). Particle Size and Shape Analysis using Imagej with Customized Tools for Segmentation of Particles. International Journal of Engineering Research And, V4(11). https://doi.org/10.17577/IJERTV4IS110211 DOI: https://doi.org/10.17577/IJERTV4IS110211
Riyanto, A. (2019). Preparasi dan Karakteristik Fisis Nanopartikel Magnetit (Fe3O4). Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat, 16(1), 35. https://doi.org/10.20527/flux.v16i1.5524 DOI: https://doi.org/10.20527/flux.v16i1.5524
Silic, M. R., & Zhang, G. (2021). Tissue-specific modification of cellular bioelectrical activities using the chemogenetic tool, DREADD, in zebrafish. Developmental Biology. https://doi.org/10.1101/2021.06.22.449481 DOI: https://doi.org/10.1101/2021.06.22.449481
Unnikrishnan, B., Wu, R.-S., Wei, S.-C., Huang, C.-C., & Chang, H.-T. (2020). Fluorescent Carbon Dots for Selective Labeling of Subcellular Organelles. ACS Omega, 5(20), 11248–11261. https://doi.org/10.1021/acsomega.9b04301 DOI: https://doi.org/10.1021/acsomega.9b04301
Vinsiah, R., & Suharman, A. (2014). Pembuatan Karbon Aktif dari Cangkang Kulit Buah Karet (Hevea brasilliensis). Pendidikan Kimia Universitas Sriwijaya, 189–199.
Wang, R., Gu, W., Liu, Z., Liu, Y., Ma, G., & Wei, J. (2021). Simple and Green Synthesis of Carbonized Polymer dots from Nylon 66 Waste Fibers and its Potential Application. ACS Omega, 6(48), 32888–32895. https://doi.org/10.1021/acsomega.1c04808 DOI: https://doi.org/10.1021/acsomega.1c04808
Wang, X., Cao, L., Lu, F., Meziani, M. J., Li, H., Qi, G., Zhou, B., Harruff, B. A., Kermarrec, F., & Sun, Y.-P. (2009). Photoinduced electron transfers with carbon dots. Chemical Communications, 25, 3774. https://doi.org/10.1039/b906252a DOI: https://doi.org/10.1039/b906252a
Wilson, A., & Baietto, M. (2009). Applications and Advances in Electronic-Nose Technologies. Sensors, 9(7), 5099–5148. https://doi.org/10.3390/s90705099 DOI: https://doi.org/10.3390/s90705099
Wu, Y., Li, C., van der Mei, H. C., Busscher, H. J., & Ren, Y. (2021). Carbon Quantum Dots Derived from Different Carbon Sources for Antibacterial Applications. Antibiotics, 10(6), 623. https://doi.org/10.3390/antibiotics10060623 DOI: https://doi.org/10.3390/antibiotics10060623
Yuniarto, A., Sukandar, E. Y., Fidrianny, I., & Adnyana, I. K. (2017). Aplikasi Zebrafish (Danio rerio) pada Beberapa Model Penyakit Eksperimental. MPI (Media Pharmaceutica Indonesiana), 1(3), 116–126. https://doi.org/10.24123/mpi.v1i3.215 DOI: https://doi.org/10.24123/mpi.v1i3.215
Zhang, Q., Wang, R., Feng, B., Zhong, X., & Ostrikov, K. (2021). Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation. Nature Communications, 12(1), 6856. https://doi.org/10.1038/s41467-021-27071-4 DOI: https://doi.org/10.1038/s41467-021-27071-4
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2023 Jumardin Jumardin, Akhiruddin Maddu, Kokoeh Santoso, Isnaeni Isnaeni
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Please find the rights and licenses in JIF (Jurnal Ilmu Fisika).
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial 4.0 International License.
2. Author's Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
JIF's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, JIF permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and JIF on distributing works in the journal.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale,
- The right to self-archive the article.
5. Co-Authorship
If the article was jointly prepared by other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or JIF upon two months's notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party's notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of JIF.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by JIF or its sublicensee.
8. Miscellaneous
JIF will publish the article (or have it published) in the journal if the article's editorial process is successfully completed and JIF or its sublicensee has become obligated to have the article published. JIF may conform the article to a style of punctuation, spelling, capitalization, referencing and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.