egs++: Optimization of Simulation Transport Parameters

Authors

  • Sitti Yani Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor, Bogor, 16680, Indonesia

DOI:

https://doi.org/10.25077/jif.15.1.66-72.2023

Keywords:

egs , EGSnrc, Monte Carlo, Transport parameters

Abstract

MC transport parameters used are common to all egs++ applications. The effect of each transport parameter need to understand to optimize the simulation process. Therefore, the purpose of this study was to investigate the efficiency of egs++ simulation for different transport parameters in water phantom. This water phantom has built using slab. Collimated source defined 100 cm above the phantom. The simulation parameters such as the efficiency, statistical uncertainty, and accuracy of selecting transport parameters such as electron and photon cut-off energies, spin effects, atomic relaxations, and bound Compton scattering was investigated. The selection of ECUT and PCUT greatly affects the simulation time. The simulation time, efficiency and energy fractions have same value for varied ECUT except for 0.521 MeV. The energy fraction have been shifted but the simulation time and efficiency were same. Turning on spin effects in this simulation increases simulation time by 25%. The simulation time increases by about 15% when relaxations are turned on. The more accurate result of deposited energy using EGSnrc algorithm is about 30% slower than the less accurate PRESTA-I algorithm. Therefore, The optimization of transport parameters is needed in the simulation of egs++ to provide the best efficiency.

Downloads

Download data is not yet available.

References

Alva-Sánchez, M., & Pianoschi, T. A. (2020). Study of the distribution of doses in tumors with hypoxia through the PENELOPE code. Radiation Physics and Chemistry. DOI: https://doi.org/10.1016/j.radphyschem.2019.108428

Andreo, P. (2018). Monte Carlo simulations in radiotherapy dosimetry. Radiation Oncology, 1-15. DOI: https://doi.org/10.1186/s13014-018-1065-3

Arce, P., Lagares, J. I., & Aguilar-Redondo, P.-B. (2020). A proposal for a Geant4 physics list for radiotherapy optimized in physics performance and CPU time. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. DOI: https://doi.org/10.1016/j.nima.2020.163755

Campos, L. T., Magalhaes, L. A., & Almeida, C. E. (2019). An Efficiency Studying of an Ion Chamber Simulation Using Variance Reduction Techniques with EGSnrc. J Biomed Phys Eng , 259-266. DOI: https://doi.org/10.31661/jbpe.v9i3Jun.682

Failing, T., Hartmann, G. H., Hensley, F. W., Keil, B., & Zink, K. (2022). Enhancement of the EGSnrc code egs_chamber for fast fluence calculations of charged particles. Zeitschrift für Medizinische Physik. DOI: https://doi.org/10.1016/j.zemedi.2022.04.003

Jabbari, K., & Seuntjens, J. (2014). A fast Monte Carlo code for proton transport in radiation therapy based on MCNPX. Journal of Medical Physics, 156–163. DOI: https://doi.org/10.4103/0971-6203.139004

Kawrakow, I., Mainegra-Hing, E., Tessier, F., Townson, R., & Walters, B. (2019). EGSnrc C++ class library. Ottawa: National Research Council of Canada.

Kim, J.-H., Hill, R., & Kuncic, Z. (2012). An evaluation of calculation parameters in the EGSnrc/BEAMnrc Monte Carlo codes and their effect on surface dose calculation. Physics in Medicine and Biology, N267-78. DOI: https://doi.org/10.1088/0031-9155/57/14/N267

Mohammed, M., Chakir, E., Boukhal, H., Saeed, M., & Bardouni, T. E. (2016). Evaluation of variance reduction techniques in BEAMnrc Monte Carlo simulation to improve the computing efficiency. Journal of Radiation Research and Applied Sciences, 424-430. DOI: https://doi.org/10.1016/j.jrras.2016.05.005

Shanmugasundaram, S., & Chandrasekaran, S. (2018). Optimization of Variance Reduction Techniques used in EGSnrc. J Med Phys, 185-194. DOI: https://doi.org/10.4103/jmp.JMP_132_17

Thing, R. S., & Mainegra-Hing, E. (2014). Optimizing cone beam CT scatter estimation in egs_cbct for a clinical and virtual chest phantom. Medical Physics. DOI: https://doi.org/10.1118/1.4881142

Townson, R., Tessier, F., Mainegra-Hing, E., & Walters, B. (2021). Getting Started with EGSnrc. Ottawa: National Research Council of Canada.

Tuan, H. D., Tai, D. T., Oanh, L. T., & Loan, T. T. (2019). Application of variance reduction techniques in EGSnrc based. Science & Technology Development Journal, 258-263. DOI: https://doi.org/10.32508/stdj.v22i2.1234

Yani, S., Hadijah, S., & Husin, A. D. (2022). Analisis Parameter Keluaran pada Kolom Termal Reaktor Kartini untuk Boron Neutron Capture Therapy (BNCT) dengan Software Phits. Jurnal Fisika, 55-64.

Yani, S., Tursinah, R., Rhani, M. F., Haryanto, F., & Arif, I. (2019). Comparison between EGSnrc and MCNPX for X-ray target in 6 MV photon beam. Journal of Physics: Conference Series, 012014. DOI: https://doi.org/10.1088/1742-6596/1127/1/012014

Downloads

Published

2023-03-07

How to Cite

Yani, S. . (2023). egs++: Optimization of Simulation Transport Parameters . JURNAL ILMU FISIKA | UNIVERSITAS ANDALAS, 15(1), 66–72. https://doi.org/10.25077/jif.15.1.66-72.2023

Issue

Section

Research Article

Citation Check