Frequency and Amplification for Assessing site Effects and PVS in the Padang City Railway

Authors

  • Ahmad Fauzi Poha Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Pauh, Padang 25163, Indonesia
  • Dwi Pujiastuti Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Pauh, Padang 25163, Indonesia
  • Nadila Syarah Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Pauh, Padang 25163, Indonesia
  • Nurul Annisa Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Pauh, Padang 25163, Indonesia

DOI:

https://doi.org/10.25077/jif.15.2.106-115.2023

Keywords:

dominant frequency, HVSR, microtremor, PVS

Abstract

The train uses a special line in the form of railroad tracks that produce vibrations during movement. This study aims to determine the type of soil layer and the peak particle velocity due to the train around the Padang City train line. The acquisition was carried out at 8 points with a recording duration of 65 minutes using three geophone components. Microtremor data was analyzed using horizontal to vertical spectral ratio (HVSR) method. The results show that the research area has a type of surface layer of soil is sediment with a thickness of 30 meters or more. This is indicated by the dominant frequency value ranging from 0.64 Hz – 1.67 Hz. The research area has an amplification value ranging from 0.85 to 1.29. The train vibration has a dominant frequency ranging from 2.20 Hz – 13.54 Hz and an amplification of 1.11 – 1.82. The particle velocity values ​​obtained from the PVS values ​​ranged from 0.1605 mm/s – 0.7592 mm/s. The research area can be categorized as safe from train vibrations because of the low amplification value and the PVS value which is below the safe limit (<3 mm/s) according to SNI 7571:2010.

Downloads

Download data is not yet available.

Author Biography

Ahmad Fauzi Poha, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Pauh, Padang 25163

Department of Physics, Andalas University, Padang, Indonesia

Scopus

Google Scholar

 

References

Ahn, J. K., Kwak, D. Y., & Kim, H. S. (2021). Estimating VS30 at Korean Peninsular seismic observatory stations using HVSR of event records. Soil Dynamics and Earthquake Engineering, 146, 1–20. https://doi.org/10.1016/j.soildyn.2021.106650 DOI: https://doi.org/10.1016/j.soildyn.2021.106650

Alves Costa, P., Calçada, R., & Silva Cardoso, A. (2012). Ballast mats for the reduction of railway traffic vibrations. Numerical study. Soil Dynamics and Earthquake Engineering, 42, 137–150. https://doi.org/10.1016/j.soildyn.2012.06.014 DOI: https://doi.org/10.1016/j.soildyn.2012.06.014

Arifin, S. S., Mulyatno, B. S., Marjiyono, & Setianegara, R. (2014). Penentuan Zona Rawan Guncangan Bencana Gempa Bumi Berdasarkan Analisis Nilai Amplifikasi Hvsr Mikrotremor Dan Analisis Periode Dominan Daerah Liwa Dan Sekitarnya. Geofisika Eksplorasi, 2(1), 30–40.

Asmussen, B., Stiebel, D., Kitson, P., Farrington, D., & Benton, D. (2008). Reducing the noise emission by increasing the damping of the rail: Results of a field test. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 99, 229–235. https://doi.org/10.1007/978-3-540-74893-9_32 DOI: https://doi.org/10.1007/978-3-540-74893-9_32

Azzara, R. M., Galassi, S., Garuglieri, S., Paradiso, M., & Tanganelli, M. (2021). Analysis of vibrations recorded inside the cemetery area of Incisa, central Italy. Case Studies in Construction Materials, 15, 1–19. https://doi.org/10.1016/j.cscm.2021.e00623 DOI: https://doi.org/10.1016/j.cscm.2021.e00623

Connolly, D. P., Marecki, G. P., Kouroussis, G., Thalassinakis, I., & Woodward, P. K. (2016). The growth of railway ground vibration problems — A review. Science of the Total Environment, 568, 1276–1282. https://doi.org/10.1016/j.scitotenv.2015.09.101 DOI: https://doi.org/10.1016/j.scitotenv.2015.09.101

Guo, Z., Aydin, A., Huang, Y., & Xue, M. (2021). Polarization characteristics of Rayleigh waves to improve seismic site effects analysis by HVSR method. Engineering Geology, 292, 1–12. https://doi.org/10.1016/j.enggeo.2021.106274 DOI: https://doi.org/10.1016/j.enggeo.2021.106274

Haerudin, N., Rustadi, Alami, F., & Yogi, I. B. S. (2020). The effect site analysis based on microtremor data using the Horizontal to Vertical Spectral Ratio (HVSR) method in the Bandar Lampung City. Journal of Physics: Conference Series, 1572(1), 1–9. https://doi.org/10.1088/1742-6596/1572/1/012075 DOI: https://doi.org/10.1088/1742-6596/1572/1/012075

Herbut, A., Rybak, J., & Brząkała, W. (2020). On a sensor placement methodology for monitoring the vibrations of horizontally excited ground. Sensors (Switzerland), 20(7), 1–18. https://doi.org/10.3390/s20071938 DOI: https://doi.org/10.3390/s20071938

Irham, M. N., Zainuri, M., Yuliyanto, G., & Wirasatriya, A. (2021). Measurement of ground response of Semarang coastal region risk of earthquakes by Horizontal to Vertical Spectral Ratio (HVSR) microtremor method. Journal of Physics: Conference Series, 1943(1), 1–7. https://doi.org/10.1088/1742-6596/1943/1/012033 DOI: https://doi.org/10.1088/1742-6596/1943/1/012033

Iswanto, E. R., Indrawati, Y., & Riyanto, T. A. (2019). Studi Mikrotremor dengan Metode Horizontal to Vertical Spectral Ratio (HVSR) di Tapak RDE, Serpong. Eksplorium, 40(2), 105–114. https://doi.org/10.17146/eksplorium.2019.40.2.5489 DOI: https://doi.org/10.17146/eksplorium.2019.40.2.5489

Kafadar, O. (2020). A geophone-based and low-cost data acquisition and analysis system designed for microtremor measurements. Geoscientific Instrumentation, Methods and Data Systems, 9(2), 365–373. https://doi.org/10.5194/gi-9-365-2020 DOI: https://doi.org/10.5194/gi-9-365-2020

Kastowo, Leo, G. W., Gafoer, S., & Amin, T. C. (1996). Peta Geologi Lembar Padang. Sumatera.

Koller, G., Kalivoda, M. T., Jaksch, M., Muncke, M., Oguchi, T., & Matsuda, Y. (2012). Railway noise reduction technology using a damping material. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 118, 159–166. https://doi.org/10.1007/978-4-431-53927-8_19 DOI: https://doi.org/10.1007/978-4-431-53927-8_19

Kumar, S., Singh, P., Sushil, R., Singh, P., & Tiwari, A. (2021). Microtremor measurement to evaluate site characteristics by horizontal to vertical spectral ratio technique in Sikkim, Northeast Himalayas, India. Quaternary International, 585(October), 134–142. https://doi.org/10.1016/j.quaint.2020.11.028 DOI: https://doi.org/10.1016/j.quaint.2020.11.028

López-Mendoza, D., Connolly, D. P., Romero, A., Kouroussis, G., & Galvín, P. (2020). A transfer function method to predict building vibration and its application to railway defects. Construction and Building Materials, 232, 1–16. https://doi.org/10.1016/j.conbuildmat.2019.117217 DOI: https://doi.org/10.1016/j.conbuildmat.2019.117217

Maghami, S., Sohrabi-Bidar, A., Bignardi, S., Zarean, A., & Kamalian, M. (2021). Extracting the shear wave velocity structure of deep alluviums of “Qom” Basin (Iran) employing HVSR inversion of microtremor recordings. Journal of Applied Geophysics, 185, 1–19. https://doi.org/10.1016/j.jappgeo.2020.104246 DOI: https://doi.org/10.1016/j.jappgeo.2020.104246

Muhajir, A., Anwar, S., & Sumantri, P. (2020). Jaringan Kereta Api sebagai Sarana Transportasi Pendukung Industri Perkebunan di Sumatera Timur: Peranan Deli Maatschappij dan Deli Spoorweg Maatschappij , 1881-1940. Journal of History and Cultural Heritage, 1(1), 1–8. DOI: https://doi.org/10.34007/warisan.v1i1.162

Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on ground surface. Quarterly Reports, 30(1), 25–33.

Nelson, S. (2019). Application of HVSR to estimating thickness of laterite weathering profiles in basalt. 1376(February), 1365–1376. https://doi.org/10.1002/esp.4580 DOI: https://doi.org/10.1002/esp.4580

Nogoshi, M., & Igarashi, T. (1971). On the Amplitude Characteristics of Microtremor (Part 2). Journal of the Seismological Society of Japan., 379(1), 26–40. DOI: https://doi.org/10.4294/zisin1948.24.1_26

Santos, N. C. dos, Barbosa, J., Calçada, R., & Delgado, R. (2017). Track-ground vibrations induced by railway tra ffi c : experimental validation of a 3D numerical model. Soil Dynamics and Earthquake Engineering, 97(March), 324–344. https://doi.org/10.1016/j.soildyn.2017.03.004 DOI: https://doi.org/10.1016/j.soildyn.2017.03.004

Santos, N. C. dos, Colaço, A., Costa, P. A., & Calçada, R. (2016). Experimental analysis of track-ground vibrations on a stretch of the Portuguese railway network. Soil Dynamics and Earthquake Engineering, 90, 358–380. https://doi.org/10.1016/j.soildyn.2016.09.003 DOI: https://doi.org/10.1016/j.soildyn.2016.09.003

Sesame. (2004). Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements , processing and interpretation (Issue December). University of Potsdam.

Shankar, U., Kumari, S., Yadav, P. K., Singh, A. P., & Gupta, A. K. (2021). Microtremor measurements in the India’s holy city, Varanasi for assessment of site characteristics. Quaternary International, 585, 143–151. https://doi.org/10.1016/j.quaint.2021.01.008 DOI: https://doi.org/10.1016/j.quaint.2021.01.008

Singh, A. P., Sairam, B., Pancholi, V., Chopra, S., & Kumar, M. R. (2020). Delineation of thickness of intrabasaltic rocks beneath the Deccan Volcanic province of western India through microtremor analysis. Soil Dynamics and Earthquake Engineering, 138(February), 1–14. https://doi.org/10.1016/j.soildyn.2020.106348 DOI: https://doi.org/10.1016/j.soildyn.2020.106348

Siska, D., Fithra, H., Lisa, N. P., Haerudin, N., & Farid, M. (2020). Seismic Vulnerability Mapping to Support Spatial Plans in Lhokseumawe City Area. 10(1), 269–273. DOI: https://doi.org/10.18517/ijaseit.10.1.10276

Susilanto, P., Ngadmanto, D., Daryono, Hardy, T., & Pakpahan, S. (2016). Susilanto. P., Drajat. N., Daryono., Thomas. H. & Suliyanti. P. (2016). Penerapan Metode Mikrotremor HVSR untuk Penentuan Respons Dinamika Kegempaan di Kota Padang. Jurnal Lingkungan dan Bencana Geologi. 7(2). 79-88. Jurnal Lingkungan Dan Bencana Geologi, 7(2), 79–88.

Susilo, A., & Wiyono, S. H. (2012). Frequency Analysis and Seismic Vulnerability Index by Using Nakamura Methods at a New Artery Way in Porong , Sidoarjo , Indonesia. International Journal of Applied Physics and Mathematics, 2(4), 227–230. https://doi.org/10.7763/IJAPM.2012.V2.97 DOI: https://doi.org/10.7763/IJAPM.2012.V2.97

Syarah, N., & Pohan, A. F. (2022). Analisis Mikrotremor Menggunakan Metode Horizontal to Vertical Spectral Ratio di Jalur Kereta Api Kota Padang. 11(3), 313–319. DOI: https://doi.org/10.25077/jfu.11.3.313-319.2022

Tian, R., Zhou, X., Wang, J., Lin, J., & Li, D. (2020). Site Characterization of Soil-rock Mixture Sedimentary Stratum Based on HVSR Analysis in the Chinese Loess Plateau. Journal of Environmental and Engineering Geophysics, 25(1), 101–109. DOI: https://doi.org/10.2113/JEEG19-060

Trevisani, S., Pettenati, F., Sandron, S., & Paudyal, D. (2021). Mapping long ‑ period soil resonances in the Kathmandu basin using microtremors. Environmental Earth Sciences, 80(7), 1–16. https://doi.org/10.1007/s12665-021-09532-7 DOI: https://doi.org/10.1007/s12665-021-09532-7

Tripathy, G. R., Shirke, R. R., & Kudale, M. D. (2016). Safety of engineered structures against blast vibrations: A case study. Journal of Rock Mechanics and Geotechnical Engineering, 8(2), 248–255. https://doi.org/10.1016/j.jrmge.2015.10.007 DOI: https://doi.org/10.1016/j.jrmge.2015.10.007

Yaghmaei-Sabegh, S., & Rupakhety, R. (2020). A new method of seismic site classi fi cation using HVSR curves : A case study of the 12 November 2017 Mw 7 . 3 Ezgeleh earthquake in Iran. Engineering Geology, 270(February), 1–12. https://doi.org/10.1016/j.enggeo.2020.105574 DOI: https://doi.org/10.1016/j.enggeo.2020.105574

Zavala, N., Clemente-ch, A., Gonz, M., & Sawires, R. (2021). Application of horizontal to Vertical Spectral Ratio microtremor technique in the analysis of site effects and structural response of buildings in Quer ´ etaro city , Mexico. Journal of South American Earth Sciences. 108(February), 1–13. https://doi.org/10.1016/j.jsames.2021.103211 DOI: https://doi.org/10.1016/j.jsames.2021.103211

Zeng, J., Roussis, P. C., Mohammed, A. S., Maraveas, C., Fatemi, S. A., Armaghani, D. J., & Asteris, P. G. (2021). applied sciences Prediction of Peak Particle Velocity Caused by Blasting through the Combinations of Boosted-CHAID and SVM Models with Various Kernels. Applied Sciences, 11(8), 1–17. DOI: https://doi.org/10.3390/app11083705

Zhu, C., Cotton, F., & Pilz, M. (2020). Detecting Site Resonant Frequency Using HVSR : Fourier versus Response Spectrum and the First versus the Highest Peak Frequency. Bulletin of the Seismological Society of America, 110(2), 427–440. https://doi.org/10.1785/0120190186 DOI: https://doi.org/10.1785/0120190186

Downloads

Published

2023-05-15

How to Cite

Poha, A. F., Pujiastuti, D. ., Syarah, N. ., & Annisa, N. (2023). Frequency and Amplification for Assessing site Effects and PVS in the Padang City Railway. JURNAL ILMU FISIKA, 15(2), 106–115. https://doi.org/10.25077/jif.15.2.106-115.2023

Issue

Section

Research Article

Citation Check