Development of Measuring Instruments for Lung Vital Capacity and Human Respiratory Rate Based on Fiber Optic Sensors

Authors

  • Mega Roza Lia Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang 25163, Indonesia
  • Harmadi Harmadi Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang 25163, Indonesia
  • Afdhal Muttaqin Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang 25163, Indonesia

DOI:

https://doi.org/10.25077/jif.15.1.39-47.2023

Keywords:

fiber optic , laser diode OPT101 , vital lung capacity , respiratory rate

Abstract

The development of measuring instruments for vital lung capacity and human respiratory rate based on the fiber-optic sensor has a system consisting of a laser diode as a light source, optical fiber as a waveguide, and OPT101 as a photodetector. This research consists of three stages: hardware design, software design, and data analysis. Each component used is tested and then tested on the entire system to determine each component's performance when used together. In the software system, the analog signal in the form of voltage from OPT101 is converted into an ADC value by an analog-to-digital converter. Based on the ADC value obtained, the threshold value is determined as the threshold for reading the respiratory rate. The number of ADC values ​​during the measurement of vital lung capacity is then converted to volume. Testing of measuring instruments is carried out by comparing the results of instruments developed with a standard medical measuring device. The results of the tests and analyses that have been carried out have obtained an accuracy value of 92.62% for the measurement of vital lung capacity, 95.14% for the measurement of respiratory rate, and 92.62% for the measurement of the respiratory rate of variations in activity.

Downloads

Download data is not yet available.

References

AM, U., Mathew, E., Viswam, A. K. S., & PA, S. (2020). Vital Capacity Measurement using Intensity Modulated Optical Fiber Sensor. Australian Journal of Electrical and Electronics Engineering, 17(3), 183–187. DOI: https://doi.org/10.1080/1448837X.2020.1816613

Damayanti, S. (2016). Study Komparatif Kapasitas Vital Paru dan Saturasi Oksigen pada Atlet Futsal dan Non Atlet di Yogyakarta. Jurnal Keperawatan Respati Yogyakarta, 3(2), 23–34.

Fidanboylu, K., & Efendioglu, H. S. (2009). Fiber optic sensors and their applications. 5th International Advanced Technologies Symposium (IATS'09), 6, 2–3.

Guang, W., Baraldo, M., & Furlanut, M. (1995). Calculating percentage prediction error: a user's note. Pharmacological Research, 32(4), 241–248. DOI: https://doi.org/10.1016/S1043-6618(05)80029-5

Heidaryan, E. (2019). A note on model selection based on the percentage of accuracy-precision. Journal of Energy Resources Technology, 141(4). DOI: https://doi.org/10.1115/1.4041844

Idachaba, F., Ike, D. U., & Hope, O. (2014). Future trends in fiber optics communication. Proceedings of the World Congress on Engineering, 1, 2–4.

Ikhsan, L. S., & Harmadi, H. (2019). Rancang Bangun Alat Ukur Frekuensi Pernapasan Manusia Berbasis Sensor Serat Optik. Jurnal Fisika Unand, 8(4), 301–307. DOI: https://doi.org/10.25077/jfu.8.4.301-307.2019

Lim, M. W. (2006). The history of extracorporeal oxygenators. Anaesthesia, 61(10), 984–995. DOI: https://doi.org/10.1111/j.1365-2044.2006.04781.x

Mead, J. (1980). Dysanapsis in normal lungs assessed by the relationship between maximal flow, static recoil, and vital capacity. American Review of Respiratory Disease, 121(2), 339–342.

Meier, M., Romano, V., & Feurer, T. (2007). Material processing with pulsed radially and azimuthally polarized laser radiation. Applied Physics A, 86(3), 329–334. DOI: https://doi.org/10.1007/s00339-006-3784-9

Organization, W. H. (2019). The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

Sabri, N., Aljunid, S. A., Salim, M. S., & Fouad, S. (2015). Fiber optic sensors: short review and applications. Recent Trends in Physics of Material Science and Technology, 299–311. DOI: https://doi.org/10.1007/978-981-287-128-2_19

Santoso, D. R. (2017). Pengukuran Stress Mekanik Berbasis Sensor Piezoelektrik: Prinsip Desain dan implementasi. Universitas Brawijaya Press.

Saputro, B. H., Harmadi, H., & Wildian. (2014). Analisis Pergeseran Mikro Menggunakan Sensor Serat Optik Fd 620-10. Jurnal Ilmu Fisika| Universitas Andalas, 6(1), 36–39. DOI: https://doi.org/10.25077/jif.6.1.36-39.2014

Suraya, E. (2018). Rancang Bangun Sistem Monitoring Pernapasan Berbasis Serat Optik Singlemode-Multimode-Singlemode (SMS) pada Matras. Faculty of Industrial Technology.

Umara, A.F., Imanuel SM., Edi, S., Dwi K., dan L. E. (2021). Keperawatan Medikal Bedah Sistem Respirasi. Yayasan Kita Menulis.

Wanger, J., Clausen, J. L., Coates, A., Pedersen, O. F., Brusasco, V., Burgos, F., Casaburi, R., Crapo, R., Enright, P., van der Grinten, C. P. M., Gustafsson, P., Hankinson, J., Jensen, R., Johnson, D. C., MacIntyre, N., McKay, R., Miller, M. R., Navajas, D., Pellegrino, R., & Veigi, G. (2005). Standardisation of the measurement of lung volumes. European Respiratory Journal, 26(3), 511–522. https://doi.org/10.1183/09031936.05.00035005 DOI: https://doi.org/10.1183/09031936.05.00035005

Wheatley, I. (2018). Respiratory rate 3: how to take an accurate measurement. Nursing Times, 114(7), 21–22.

Yin, S., Ruffin, P. B., & Francis, T. S. (2017). Fiber optic sensors. CRC press. DOI: https://doi.org/10.1201/9781420053661

Downloads

Published

2022-12-30

How to Cite

Roza Lia, M., Harmadi, H., & Muttaqin, A. . (2022). Development of Measuring Instruments for Lung Vital Capacity and Human Respiratory Rate Based on Fiber Optic Sensors. JURNAL ILMU FISIKA, 15(1), 39–47. https://doi.org/10.25077/jif.15.1.39-47.2023

Issue

Section

Research Article

Citation Check