An Exact Solution of Nonlinear Schrödinger Equation in a Lossy Fiber System Using Direct Solution Method

Authors

  • Zulfi Abdullah Theoretical Physics Laboratory, Department of Physics, Faculty of Mathematics and Natural Science, Universitas Andalas, Padang, Indonesia, Indonesia https://orcid.org/0000-0002-8052-0836
  • Trengginas Eka Putra Sutantyo Theoretical Physics Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Kampus Unand Limau Manis, Padang 25163, Indonesia, Indonesia https://orcid.org/0000-0002-7633-909X
  • Mahdhivan Syafwan Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Kampus Unand Limau Manis, Padang 25163, Indonesia, Indonesia
  • Ahmad Ripai Theoretical Physics Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Kampus Unand Limau Manis, Padang 25163, Indonesia, Indonesia https://orcid.org/0000-0002-9453-6142
  • Hanifah Azzaura Musyayyadah Institute of Engineering Mathematics, Faculty of Applied Science and Humanities, Universiti Malaysia Perlis (UNIMAP) Pauh Putra Campus, 02600, Arau, Perlis, Malaysia, Malaysia
  • Mohamad Nazri Abdul Halif Institute of Engineering Mathematics, Faculty of Applied Science and Humanities, Universiti Malaysia Perlis (UNIMAP) Pauh Putra Campus, 02600, Arau, Perlis, Malaysia, Malaysia

DOI:

https://doi.org/10.25077/jif.15.1.13-21.2023

Keywords:

NLSE, nonlinear fiber optics, soliton, fiber losses, direct solution method

Abstract

We present an exact solution of the nonlinear Schrödinger equation (NLSE) for beam propagation in nonlinear fiber optics. It is a lossy fiber system with the beam as solitons. Fiber losses are understood to reduce the peak power of solitons along the fiber length. That is due to its value depending on the fiber attenuation constant of α. Considering fiber loss features on the equation, we write one set modification of the NLSE and make models the main topic of our work. We solved the model and found a straightforward analytical solution of modified NLSE for the system via the direct solution method. To the best of our knowledge, no literature has presented such as solution yet. By substituting them into equations, we validate solutions. It is valid as an exact solution to the NLSE. Lastly, we found a solution offering soliton propagation suitable for the system under study.

Downloads

Download data is not yet available.

References

Agrawal, G. P. (2011). Nonlinear fiber optics: its history and recent progress. JOSA B, 28(12), A1-A10. DOI: https://doi.org/10.1364/JOSAB.28.0000A1

Agrawal, G. P. (2013), Nonlinear Fiber Optics, 5th Edition, Academic Press. Inc, San Diego, C A. DOI: https://doi.org/10.1016/B978-0-12-397023-7.00011-5

Bakodah, H. O., Banaja, M. A., Alshaery, A. A., & Al Qarni, A. A. (2019). Numerical Solution of Dispersive Optical Solitons with Schrödinger-Hirota Equation by Improved Adomian Decomposition Method. Mathematical Problems in Engineering, 2019. https://doi.org/10.1155/2019/2960912 DOI: https://doi.org/10.1155/2019/2960912

Böhm, M., & Mitschke, F. (2007). Solitons in lossy fibers. Physical Review A, 76(6), 1–7. https://doi.org/10.1103/physreva.76.063822 DOI: https://doi.org/10.1103/PhysRevA.76.063822

Inc, M., Aliyu, A. I., & Yusuf, A. (2017). Solitons and conservation laws to the resonance nonlinear Shrödinger’s equation with both spatio-temporal and inter-modal dispersions. Optik, 142. https://doi.org/10.1016/j.ijleo.2017.06.010 DOI: https://doi.org/10.1016/j.ijleo.2017.06.010

Katti, A. (2019). Temporal behaviour of bright solitons in photorefractive crystals having both the linear and quadratic electro-optic effect. Chaos, Solitons and Fractals, 126. https://doi.org/10.1016/j.chaos.2019.05.018 DOI: https://doi.org/10.1016/j.chaos.2019.05.018

Kivshar, Y. S., & Agrawal, G. P. (2003). Optical Solitons: From Fibers to Photonic Crystals. In Optical Solitons: From Fibers to Photonic Crystals. https://doi.org/10.1016/B978-0-12-410590-4.X5000-1 DOI: https://doi.org/10.1016/B978-012410590-4/50012-7

Kudryashov, N. A. (2021). Optical solitons of the resonant nonlinear Schrödinger equation with arbitrary index. Optik, 235. https://doi.org/10.1016/j.ijleo.2021.166626 DOI: https://doi.org/10.1016/j.ijleo.2021.166626

Liu, Y. H., Li, S. R., Bao, Y. Y., & Xu, T. F. (2022). Propagation of dark solitons in parity-time symmetric waveguides. Optik, 253. https://doi.org/10.1016/j.ijleo.2022.168584 DOI: https://doi.org/10.1016/j.ijleo.2022.168584

Mollenauer, L. F., & Gordon, J. P. (2006). Solitons in Optical Fibers: Fundamentals and Applications. Elsevier.

Nisar, K. S., Ali, K. K., Inc, M., Mehanna, M. S., Rezazadeh, H., & Akinyemi, L. (2022). New solutions for the generalized resonant nonlinear Schrödinger equation. Results in Physics, 33. https://doi.org/10.1016/j.rinp.2021.105153 DOI: https://doi.org/10.1016/j.rinp.2021.105153

Ripai, A., Abdullah, Z., Syafwan, M., & Hidayat, W. (2020). Benchmarking of the Split-Step Fourier Method on Solving a Soliton Propagation Equation in a Nonlinear Optical Medium. Jurnal Ilmu Fisika, 12(2). https://doi.org/10.25077/jif.12.2.105-112.2020 DOI: https://doi.org/10.25077/jif.12.2.105-112.2020

Ripai, A., Abdullah, Z., Syafwan, M., & Hidayat, W. (2021). Application of the split-step Fourier method in investigating a bright soliton solution in a photorefractive crystal. AIP Conference Proceedings, 2331. https://doi.org/10.1063/5.0041878 DOI: https://doi.org/10.1063/5.0041878

Ripai, A., Sutantyo, T. E. P., Abdullah, Z., Syafwan, M., & Hidayat, W. (2021). Effect of ansatz on soliton propagation pattern in photorefractive crystals. Journal of Physics: Conference Series, 1876(1). https://doi.org/10.1088/1742-6596/1876/1/012009 DOI: https://doi.org/10.1088/1742-6596/1876/1/012009

Saputra, N., Ripai, A., & Abdullah, Z. (2022). The Bilinear Formula in Soliton Theory of Optical Fibers. Jurnal Fisika Unand, 11(3), 387–392. DOI: https://doi.org/10.25077/jfu.11.3.387-392.2022

Sutantyo, T. E. P., Ripai, A., Abdullah, Z., Hidayat, W., & Zen, F. P. (2022). Soliton-like Solution on the Dynamics of Modified Peyrard-Bishop DNA Model in the Thermostat as a Bio-Fluid. Emerging Science Journal, 6(4), 667–678. https://doi.org/10.28991/esj-2022-06-04-01 DOI: https://doi.org/10.28991/ESJ-2022-06-04-01

Wang, L., Luan, Z., Zhou, Q., Biswas, A., Alzahrani, A. K., & Liu, W. (2021). Effects of dispersion terms on optical soliton propagation in a lossy fiber system. Nonlinear Dynamics. https://doi.org/10.1007/s11071-021-06283-9 DOI: https://doi.org/10.1007/s11071-021-06283-9

Yan, X. W., & Chen, Y. (2022). Soliton interaction of a generalized nonlinear Schrödinger equation in an optical fiber. Applied Mathematics Letters, 125, 107737. https://doi.org/10.1016/j.aml.2021.107737 DOI: https://doi.org/10.1016/j.aml.2021.107737

Yin, H. M., Tian, B., Chai, J., Liu, L., & Sun, Y. (2018). Numerical solutions of a variable-coefficient nonlinear Schrödinger equation for an inhomogeneous optical fiber. Computers and Mathematics with Applications, 76(8). https://doi.org/10.1016/j.camwa.2018.06.025 DOI: https://doi.org/10.1016/j.camwa.2018.06.025

Zhang, M. Z., Zhang, T. Y., Huo, G. W., Hui, Z. Q., Duan, Z. L., & Zha, X. W. (2019). Temporal analysis of Airy beam propagation in photorefractive media. Communications in Nonlinear Science and Numerical Simulation, 76. https://doi.org/10.1016/j.cnsns.2019.04.011 DOI: https://doi.org/10.1016/j.cnsns.2019.04.011

Zhou, Q., Wei, C., Zhang, H., Lu, J., Yu, H., Yao, P., & Zhu, Q. (2016). Exact solutions to the resonant nonlinear Schrödinger equation with both spatio-temporal and inter-modal dispersions. Proceedings of the Romanian Academy Series A - Mathematics Physics Technical Sciences Information Science, 17(4).

Downloads

Published

2022-11-06

How to Cite

Zulfi Abdullah, Trengginas Eka Putra Sutantyo, Mahdhivan Syafwan, Ahmad Ripai, Hanifah Azzaura Musyayyadah, & Mohamad Nazri Abdul Halif. (2022). An Exact Solution of Nonlinear Schrödinger Equation in a Lossy Fiber System Using Direct Solution Method . JURNAL ILMU FISIKA | UNIVERSITAS ANDALAS, 15(1), 13–21. https://doi.org/10.25077/jif.15.1.13-21.2023

Issue

Section

Research Article

Citation Check