Rigid Procedure to Calculate the Melting Point of Metal Using the Solid-Liquid Phase (Coexistence) Method

Authors

  • Artoto Arkundato Universitas Jember, Indonesia
  • Wenny Maulina Universitas Jember, Indonesia
  • Lutfi Rohman Universitas Jember, Indonesia
  • Ratna Dewi Syarifah Universitas Jember, Indonesia
  • Mohammad Ali Shafii Universitas Andalas, Indonesia

DOI:

https://doi.org/10.25077/jif.14.2.132-140.2022

Keywords:

melting point, phase change curve, phase coexistence, molecular dynamics

Abstract

Melting point, particularly metal, is one of the important data for many applications. For developing new materials, adequate theories for melting point are very crucial. The determination of melting point using the popular phase-change curve method is very easy but usually overestimate. In current work, we determine the melting point of a pure metal (iron) using the method of solid-liquid phase coexistence. For this goal, molecular dynamics simulation was applied to obtain data of trajectories of atoms. Simulation (LAMMPS) and data analysis (OVITO) procedures are strictly applied to obtain the accurate melting point of iron based on the obtained trajectories data. For initial structure design of simulation, we used the ATOMSK program. The melting point of iron obtained using the phase change curve (PCC) method is about 2750 K < TPCC < 3250 K and using the coexistence phase (CP) method is TCP = 2325 K. A more accurate calculation needs to include defects factor in the simulated material and calculation. In this research we use the Morse potential to represent all of the atomic interaction among atoms of Fe material.

Downloads

Download data is not yet available.

References

Arkundato, A., Monado, F., Sugihartono, I., Rivai, A. K., & Su’ud, Z. (2022). Diffusion coefficient calculation of iron in liquid lead using molecular dynamics method with new mixing rule for Lennard-Jones potential parameters. Kuwait Journal of Science, 1–15.

Arkundato, A., Monado, F., Supeno, Misto, & Su’Ud, Z. (2019). Performance of the Fe-Ni-Cr steel alloy in high temperature molten liquid lead. Journal of Physics: Conference Series, 1170(1).

Arkundato, A., Su’ud, Z., Abdullah, M., & Sutrisno, W. (2013a). Molecular dynamic simulation on iron corrosion-reduction in high temperature molten lead-bismuth eutectic. Turkish Journal of Physics, 37(1), 132–144.

Arkundato, A., Su’Ud, Z., Abdullah, M., Sutrisno, W., & Celino, M. (2013b). Inhibition of iron corrosion in high temperature stagnant liquid lead: A molecular dynamics study. Annals of Nuclear Energy, 62, 298–306.

Britannica, T. E. of E. (2021). Melting Point. Encyclopedia Britannica. https://www.britannica.com/science/melting-point

Davis, S. M. (2008). Atomistic Computer Simulations of the Melting Process and High Pressure Conditions, Doctoral dissertation, KTH.

Girifalco, L. A. and Weizer, V. G. (1959). Application of the Morse Potential Function to Cubic Metals. Phys. Rev., 114(3), 687--690.

Helmenstine, A. M. (2021). Melting Point Definition in Chemistry. Thoughtco. https://www.thoughtco.com/definition-of-melting-point-604569

Imanullah, M. A. B., Arkundato, A., & Purwandari, E. (2018). Density of Liquid Lead as Function of Temperature and Pressure Based on the Molecular Dynamics Method. Computational And Experimental Research In Materials And Renewable Energy, 1(1), 1.

Kozlov, É.V., Popov, L.E. & Starostenkov, M. D. (1972). Calculation of the morse potential for solid gold. Soviet Physics Journal, 15, 395–396.

Maghfiroh, C. Y., Arkundato, A., Misto, & Maulina, W. (2020). Parameters (σ, ϵ) of Lennard-Jones for Fe, Ni, Pb for Potential and Cr based on Melting Point Values Using the Molecular Dynamics Method of the Lammps Program. Journal of Physics: Conference Series, 1491(1).

March, N. H. (1992). Point defects, elastic moduli and melting in metals. In Materials Modelling (p. 6). https://www.taylorfrancis.com/chapters/edit/10.1201/9781003062936-12/point-defects-elastic-moduli-melting-metals-march

Matthai, C. C., & Rainbow, J. (2017). Molecular Dynamics Studies of the Melting of Copper with Vacancies amd Dislocations at High Pressures. MRS Advances, 2(48), 2597–2602.

Hirel, P. (2015). Atomsk: A tool for manipulating and converting atomic data files. Computer Physics Communications, 197, 212–219.

Rogachev, S. A. (2019). Applicability of molecular dynamics method to the prediction of the melting point of refractory metals and compounds. IOP Conference Series: Materials Science and Engineering, 558(1).

Stukowski, A. (2010). Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1), 015012.

Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., in ’t Veld, P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J., Tranchida, J., Trott, C., & Plimpton, S. J. (2022). LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271, 108171.

Downloads

Published

2022-08-30

How to Cite

Arkundato, A., Maulina, W. ., Rohman, L. ., Dewi Syarifah, R. ., & Ali Shafii, M. . (2022). Rigid Procedure to Calculate the Melting Point of Metal Using the Solid-Liquid Phase (Coexistence) Method. Jurnal Ilmu Fisika, 14(2), 132–140. https://doi.org/10.25077/jif.14.2.132-140.2022

Issue

Section

Research Article

Citation Check