Nanosilica Particulate Magnetic as Alternative Filler on Natural Rubber Composites with Human-Tissue-Like Mechanical Characteristic

Authors

  • Riri Murniati Republic Indonesia Defense University, Indonesia http://orcid.org/0000-0002-0629-2206
  • Arini Fitria Gunawan Republic Indonesia Defense University, Indonesia
  • Muhammad Nuraliffudin Saputra Republic Indonesia Defense University, Indonesia
  • Imastuti Imastuti Republic Indonesia Defense University, Indonesia
  • Mikrajuddin Abdullah Institut Teknologi Bandung, Indonesia

DOI:

https://doi.org/10.25077/jif.14.2.124-131.2022

Keywords:

natural rubber, alternative filler, mechanical characteristic, nanosilica

Abstract

There have been no reports of the simultaneous application of natural fillers, such as magnetite and natural zeolites, to increase the strength of composites containing silica (SiO2) fillers as reinforcing fillers in natural rubber. This study has investigated the effect of magnetically modified natural zeolite on nanosilica-reinforced natural rubber composites that include a mechanical characteristic like human tissue. We use technical specifications rubber (TSR) SIR 20 with nanosilica reinforced fillers and Titanate coupling agent (TCA) as fillers and elastomer binders. The results showed that the nanosilica-zeolite-magnetite (Fe3O4) mixture had an influence on strength and stiffness and could be a substitute filler. The precursors made with some variations include the optimization of filler and the optimization volume fraction of nanosilica. Mechanical characteristics of different human body part tissue were compared to the control samples and have similar mechanical characteristics with internal human tissue characteristic. Based on these results, nanosilica fillers combine with magnetically modified zeolites and titanate coupling agents, potentially as an alternative filler to replace carbon black, and are applicable for synthetic muscle replacement cadavers with a customized formula.

Downloads

Download data is not yet available.

Author Biographies

Arini Fitria Gunawan, Republic Indonesia Defense University

Department of Physics, Republic Indonesia Defense University, IPSC Sentul, Bogor 16810, Indonesia

Muhammad Nuraliffudin Saputra, Republic Indonesia Defense University

Department of Physics, Republic Indonesia Defense University, IPSC Sentul, Bogor 16810,

Imastuti Imastuti, Republic Indonesia Defense University

Department of Physics, Republic Indonesia Defense University, IPSC Sentul, Bogor 16810, Indonesia

References

Amiri, S. A., Van Berckel, P., Lai, M., Dankelman, J., & Hendriks, B. H. W. (2022). Tissue-mimicking phantom materials with tunable optical properties suitable for assessment of diffuse reflectance spectroscopy during electrosurgery. Biomedical Optics Express, 13(5), 2616–2643. DOI: https://doi.org/10.1364/BOE.449637

Ayers, F., Grant, A., Kuo, D., Cuccia, D. J., & Durkin, A. J. (2008). Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain. Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurements of Tissue, 6870, 56–64. DOI: https://doi.org/10.1117/12.764969

Chansoria, P., Asif, S., Gupta, N., Piedrahita, J., & Shirwaiker, R. A. (2022). Multiscale Anisotropic Tissue Biofabrication via Bulk Acoustic Patterning of Cells and Functional Additives in Hybrid Bioinks. Advanced Healthcare Materials, 2102351. DOI: https://doi.org/10.1002/adhm.202102351

Davis, J. R. (2004). Tensile testing. ASM international. DOI: https://doi.org/10.31399/asm.tb.tt2.9781627083553

Edwards, M.-B., Draper, E. R. C., Hand, J. W., Taylor, K. M., & Young, I. R. (2005). Mechanical testing of human cardiac tissue: some implications for MRI safety. Journal of Cardiovascular Magnetic Resonance, 7(5), 835–840. DOI: https://doi.org/10.1080/10976640500288149

Egorov, V. I., Schastlivtsev, I. V, Prut, E. V, Baranov, A. O., & Turusov, R. A. (2002). Mechanical properties of the human gastrointestinal tract. Journal of Biomechanics, 35(10), 1417–1425. DOI: https://doi.org/10.1016/S0021-9290(02)00084-2

Giordano, G., Gagliardi, M., Huan, Y., Carlotti, M., Mariani, A., Menciassi, A., Sinibaldi, E., & Mazzolai, B. (2021). Toward Mechanochromic Soft Material‐Based Visual Feedback for Electronics‐Free Surgical Effectors. Advanced Science, 8(15), 2100418. DOI: https://doi.org/10.1002/advs.202100418

Guo, Y. Z., Nakajima, T., Mredha, M. T. I., Guo, H. L., Cui, K., Zheng, Y., Cui, W., Kurokawa, T., & Gong, J. P. (2022). Facile preparation of cellulose hydrogel with Achilles tendon-like super strength through aligning hierarchical fibrous structure. Chemical Engineering Journal, 428, 132040. DOI: https://doi.org/10.1016/j.cej.2021.132040

Hart, C. C., & Breslin, T. (2022). Advanced surgical simulation. Google Patents.

Hartrumpf, M., Sterner, J., Schroeter, F., Kuehnel, R.-U., Ostovar, R., & Albes, J. M. (2022). How Strong Can We Pull? Critical Thresholds for Traction Forces on the Aortic Annulus: Measurements on Fresh Porcine Hearts. Medicina, 58(8), 1055. DOI: https://doi.org/10.3390/medicina58081055

Kaku, M. (2012). Physics of the future: How science will shape human destiny and our daily lives by the year 2100. Anchor.

Lowe, S. (2015). Surgical simulation models, materials, and methods. Google Patents.

Murniati, R. (2018). Nanokomposit Karet Alam/Silikon Sebagai Otot Sintetik Dengan Sifat Mekanik Seperti Otot Manusia. Jurnal Ilmu Fisika, 10(1), 38–45. DOI: https://doi.org/10.25077/jif.10.1.38-45.2018

Murniati, R., Wibowo, E., Rokhmat, M., Iskandar, F., & Abdullah, M. (2017). Natural rubber nanocomposite as human-tissue-mimicking materials for replacement cadaver in medical surgical practice. Procedia Engineering, 170, 101–107. DOI: https://doi.org/10.1016/j.proeng.2017.03.019

Wang, Y., Tai, B. L., Yu, H., & Shih, A. J. (2014). Silicone-based tissue-mimicking phantom for needle insertion simulation. Journal of Medical Devices, 8(2), 021001. DOI: https://doi.org/10.1115/1.4026508

Wren, T. A. L., Yerby, S. A., Beaupré, G. S., & Carter, D. R. (2001). Mechanical properties of the human achilles tendon. Clinical Biomechanics, 16(3), 245–251. DOI: https://doi.org/10.1016/S0268-0033(00)00089-9

Yamada, K., Iwasaki, N., & Sudo, H. (2022). Biomaterials and Cell-Based Regenerative Therapies for Intervertebral Disc Degeneration with a Focus on Biological and Biomechanical Functional Repair: Targeting Treatments for Disc Herniation. Cells, 11(4), 602. DOI: https://doi.org/10.3390/cells11040602

Yin, J., Li, M., Dai, G., Zhou, H., Ma, L., & Zheng, Y. (2021). 3D Printed Multi-material Medical Phantoms for Needle-tissue Interaction Modelling of Heterogeneous Structures. Journal of Bionic Engineering, 18(2), 346–360. DOI: https://doi.org/10.1007/s42235-021-0031-1

Downloads

Published

2022-08-30

How to Cite

Murniati, R., Fitria Gunawan, A. ., Nuraliffudin Saputra, M. ., Imastuti, I. ., & Abdullah, M. . (2022). Nanosilica Particulate Magnetic as Alternative Filler on Natural Rubber Composites with Human-Tissue-Like Mechanical Characteristic . JURNAL ILMU FISIKA, 14(2), 124–131. https://doi.org/10.25077/jif.14.2.124-131.2022

Issue

Section

Research Article

Citation Check