Photocatalytic Properties of Co-precipitated Bismuth Cobalt Ferrite

Authors

  • Abi Catur Saputri Sebelas Maret University, Indonesia
  • Nurdiyantoro Putra Prasetya Sebelas Maret University, Indonesia
  • Utari Utari Sebelas Maret University, Indonesia
  • Budi Purnama Sebelas Maret University, Indonesia

DOI:

https://doi.org/10.25077/jif.14.2.116-123.2022

Keywords:

nanoparticle, bismuth cobalt ferrite, coprecipitation , photocatalyst

Abstract

Bismuth substituted cobalt ferrite nanoparticle is studied for photocatalytic in this paper.  Bismuth cobalt ferrite has been synthesized by the coprecipitation method and low-temperature annealing treatment. The characterization results showed that the XRD spectral pattern is consistent with ICDD 221086. The crystallite size of bismuth cobalt ferrite increases with increasing annealing temperature. FTIR results confirm the available metal-oxide at number wave around 570/cm and 475/cm which is the appearance of octahedral and tetrahedral sites owing cobalt ferrite. The photocatalyst test was carried out by varying the catalyst mass and UV irradiation time. The absorption spectrum decreases with increasing catalyst mass. The increase in UV irradiation time causes the formation of more holes (h+) and electrons (e-). So that the hydroxide reaction occurs that produces free radicals. The results of this study indicate that cobalt ferrite-based nanoparticles have potential as photocatalyst materials.

Downloads

Download data is not yet available.

Author Biographies

Abi Catur Saputri, Sebelas Maret University

Department of Physics, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, 57126, Central Java, Indonesia

Nurdiyantoro Putra Prasetya, Sebelas Maret University

Department of Physics, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, 57126, Central Java, Indonesia

Utari Utari, Sebelas Maret University

Department of Physics, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, 57126, Central Java, Indonesia

Budi Purnama, Sebelas Maret University

Department of Physics, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, 57126, Central Java, Indonesia

References

Adeleke, J. T., Theivasanthi, T., Thiruppathi, M., Swaminathan, M., Akomolafe, T., & Alabi, A. B. (2018). Photocatalytic degradation of methylene blue by ZnO/NiFe 2 O 4 nanoparticles. Applied Surface Science, 455, 195–200.

Amer, M. A., Meaz, T. M., Mostafa, A. G., & El-Ghazally, H. F. (2015). Annealing effect on the structural and magnetic properties of the CuAl0.6Cr0.2Fe1.2O4 nano-ferrites. Materials Research Bulletin, 67, 207–214.

Amiri, S., & Shokrollahi, H. (2013). Magnetic and structural properties of RE doped Co-ferrite (RE=Nd, Eu, and Gd) nano-particles synthesized by co-precipitation. Journal of Magnetism and Magnetic Materials, 345, 18–23.

Arilasita, R., Utari, & Purnama, B. (2020). The effect of annealing on the crystalline structure of CoBi0.1Fe1.9O4 nanoparticles. AIP Conference Proceedings, 2296(November), 4–9.

Chaudhary, K., Shaheen, N., Zulfiqar, S., Sarwar, M. I., Suleman, M., Agboola, P. O., Shakir, I., & Warsi, M. F. (2020). Binary WO3-ZnO nanostructures supported rGO ternary nanocomposite for visible light driven photocatalytic degradation of methylene blue. Synthetic Metals, 269, 116526.

Gingasu, D., Diamandescu, L., Mindru, I., Marinescu, G., Culita, D. C., Calderon-Moreno, J. M., Preda, S., Bartha, C., & Patron, L. (2015). Chromium substituted cobalt ferrites by glycine-nitrates process. Croatica Chemica Acta, 88(4), 445–451.

Goodarz Naseri, M., Saion, E. B., Abbastabar Ahangar, H., Shaari, A. H., & Hashim, M. (2010). Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. Journal of Nanomaterials, 2010, 1-8.

Hajalilou, A., Mazlan, S. A., Abbasi, M., & Lavvafi, H. (2016). Fabrication of spherical CoFe2O4 nanoparticles via sol-gel and hydrothermal methods and investigation of their magnetorheological characteristics. RSC Advances, 6(92), 89510–89522.

Kapoor, S., Goyal, A., Bansal, S., & Singhal, S. (2018). Emergence of bismuth substituted cobalt ferrite nanostructures as versatile candidates for the enhanced oxidative degradation of hazardous organic dyes. New Journal of Chemistry, 42(18), 14965-14977.

Kiran, V. S., & Sumathi, S. (2017). Comparison of catalytic activity of bismuth substituted cobalt ferrite nanoparticles synthesized by combustion and co-precipitation method. Journal of Magnetism and Magnetic Materials, 421, 113–119.

Kotnala, R. K., & Shah, J. (2015). Ferrite Materials: Nano to spintronics Regime. In Handbook of Magnetic Materials (Vol. 23). Elsevier.

Kumar, L., & Kar, M. (2011). Effect of annealing temperature and preparation condition on magnetic anisotropy in nanocrystalline cobalt ferrite. IEEE Transactions on Magnetics, 47(10), 3645–3648.

Labhane, P. K., Huse, V. R., Patle, L. B., Chaudhari, A. L., & Sonawane, G. H. (2015). Synthesis of Cu Doped ZnO Nanoparticles: Crystallographic, Optical, FTIR, Morphological and Photocatalytic Study. Journal of Materials Science and Chemical Engineering, 03(07), 39–51.

Ramli, R., Jonuarti, R., & Hartono, A. (2017). Analisis Struktur Nano Dari Lapisan Tipis Cobalt Ferrite Yang Dipreparasi Dengan Metode Sputtering. EKSAKTA: Berkala Ilmiah Bidang MIPA, 18(01), 46–53.

Routray, K. L., Sanyal, D., & Behera, D. (2017). Dielectric, magnetic, ferroelectric, and Mossbauer properties of bismuth substituted nanosized cobalt ferrites through glycine nitrate synthesis method. Journal of Applied Physics, 122(22), 224104.

Safaat, M. (2020). Potensi Logam Oksida Sebagai Fotokatalis Degradasi Plastik Di Air Laut. Oseana, 45(1), 40–58.

Saputro, D. E., Utari, & Purnama, B. (2019). XRD and FTIR analysis of bismuth substituted cobalt ferrite synthesized by co-precipitation method. Journal of Physics: Conference Series, 1153(1).

Setiadi, E. A., Shabrina, N., Budi Utami, H. R., Fahmi, N. F., Kato, T., Iwata, S., & Suharyadi, E. (2016). Sintesis Nanopartikel Cobalt Ferrite (CoFe2O4) dengan Metode Kopresipitasi dan Karakterisasi Sifat Kemagnetannya. Indonesian Journal of Applied Physics, 3(01), 55.

Sumathi, S., & Lakshmipriya, V. (2017). Structural, magnetic, electrical and catalytic activity of copper and bismuth co-substituted cobalt ferrite nanoparticles. Journal of Materials Science: Materials in Electronics, 28(3), 2795–2802.

Sundararajan, M., John Kennedy, L., Nithya, P., Judith Vijaya, J., & Bououdina, M. (2017). Visible light driven photocatalytic degradation of rhodamine B using Mg doped cobalt ferrite spinel nanoparticles synthesized by microwave combustion method. Journal of Physics and Chemistry of Solids, 108, 61–75.

Syam, B., & Hendri, W. (2014). Sintesis Film Tungsten Oksida (Wo3) dengan Penambahan Metal Co-katalis Besi (Fe) dan Aplikasinya pada Peningkatan Aktivitas Fotokatalitik Degradasi Zat Warna Methylene Blue Menggunakan Cahaya Matahari. Youngster Physics Journal, 3(1), 15–24.

Zhang, Y., Yang, Z., Yin, D., Liu, Y., Fei, C., Xiong, R., Shi, J., & Yan, G. (2010). Composition and magnetic properties of cobalt ferrite nano-particles prepared by the co-precipitation method. Journal of Magnetism and Magnetic Materials, 322(21), 3470–3475.

Zhou, L., Fu, Q., Zhou, D., Xue, F., & Tian, Y. (2015). Solvothermal synthesis of CoFe2O4 submicron compact spheres and tunable coercivity induced via lowhttp:erature thermal treatment. Journal of Magnetism and Magnetic Materials, 392, 22–26.

Downloads

Published

2022-08-30

How to Cite

Catur Saputri, A. ., Prasetya, N. P., Utari, U., & Purnama, B. (2022). Photocatalytic Properties of Co-precipitated Bismuth Cobalt Ferrite . Jurnal Ilmu Fisika, 14(2), 116–123. https://doi.org/10.25077/jif.14.2.116-123.2022

Issue

Section

Research Article

Citation Check