Synthesis of Supercapacitor from Cocoa Fruit Peel Activated Carbon for Energy Storage

Authors

  • Rahma Fikri Nuradi Universitas Andalas, Indonesia
  • Mulda Muldarisnur Universitas Andalas, Indonesia
  • Yuli Yetri Politeknik Negeri Padang, Indonesia

DOI:

https://doi.org/10.25077/jif.14.2.86-94.2022

Keywords:

cocoa, activated carbon , supercapacitors, energy storage, physical properties

Abstract

The supercapacitor electrode has been synthesized using activated carbon from cocoa pods. Activated carbon was prepared by first drying the raw materials under the sunlight and followed by oven drying, pre-carbonization, milling, sieving, and chemical activation with 0.3 M and 0.4 M KOH solution. After chemical activation, the activated carbon was printed into pellet form, carbonized at a temperature of 600 °C, followed by physical activation at a temperature of 700 °C for four hours before polishing. We found that the optimum conditions are 700 °C and 0.4 M. The density of the obtained carbon electrode is 0.810 g/cm3. The SEM micrographs show the formation of pores with a diameter of 0.44 μm and 0.98 μm. The carbon content in the electrode sample measured using electron dispersive spectroscopy is 91.49%. The XRD data shows that the carbon electrode is amorphous with a diffraction angle (2θ) at 23.569° and 44.781°. The optimum specific capacitance of the supercapacitor is 140.2 F/g obtained for the sample activated for 2.5 hours.

Downloads

Download data is not yet available.

References

Afrianda, A., Taer, E. & Taslim, R. (2017). Pemanfaatan Ampas Sagu Sebagai Elektroda Karbon Superkapasitor. Jurnal Komunikasi Fisika Indonesia, 14(2), 1119-1124.

Armynah, B., Taer, E., Djafar, Z., Piarah, W. H. & Tahir, D. (2019). Effect of temperature on physical and electrochemical properties of the monolithic carbon-based bamboo leaf to enhanced surface area and specific capacitance of the supercapacitor. Int. J. Electrochem. Sci., 14, 7076–7087. DOI: https://doi.org/10.20964/2019.08.59

Basri, N. H., Deraman, M., Suleman, M., Nor, N. S. M., Dolah, B. N. M., Sahri, M. I. & Shamsudin, S. A. (2016). Energy and Power of Supercapacitor Using Carbon Electrode Deposited with Nanoparticles Nickel Oxide. Int. J. Electrochem. Sci., 11, 95 – 110.

Boyea, J. M., Camacho, R. E., Turano, S. & Ready, W. J. (2007). Carbon Nanotube-Based Supercapacitors: Technologies and Markets. Nanotechnology Law and Business, 4(1), 585 -593.

Clearfield, A., Reibenspies, J. H. & Bhuvanesh, N. (2008). Principles and applications of Powder Diffraction. Singapore, John Wiley and Sons. DOI: https://doi.org/10.1002/9781444305487

Farma, R., Deraman, M., Awitdrus, A., Talib, I. A., Taer, E., Basri, N., Manjunatha, J. G. G., Ishak, M., Dolah, B. N. M. & Hashmi, S. A. (2013). Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresource Technology, 132, 254–261. DOI: https://doi.org/10.1016/j.biortech.2013.01.044

Ferreira, C. S., Passos, R. R. & Pocrifka, L. A. (2014). Synthesis and Properties of Ternary Mixture of Nikel/Cobalt/Tin Oxides for Supercapacitor. Power Sources, 271, 104-107. DOI: https://doi.org/10.1016/j.jpowsour.2014.07.164

Frackowiak, E. (2006). Supercapacitors Based on Carbon Materials and Ionic Liquids. J. Braz. Chem. Soc., 17(6), 1074-1082. DOI: https://doi.org/10.1590/S0103-50532006000600003

Fuhu, L., Weidong, C., Zengmin, S., Yixian, W., Yunfang, L. & Hui, L. (2010). Activation of mesocarbon microbeads with different textures and their application for supercapacitor. Fuel Processing Technology, 91(1), 17–24. DOI: https://doi.org/10.1016/j.fuproc.2009.08.020

Liu, N.-p., Shen, J., Guan, D.-Y., Liu, D., Zhou, X.-W. & Li, Y.-j. (2013). Effect Of Carbon Aerogel Activation On Electrode Lithium Insertion Performance. Acta Phys.-Chim. Sin., 29(5), 966-972. DOI: https://doi.org/10.3866/PKU.WHXB201302281

Muchammadsam, I. D., Taer, E. & Farma, R. (2015). Pembuatan dan Karakterisasi Karbon aktif Monolit dari Kayu Karet dengan variasi Konsentrasi KOH untuk Aplikasi Superkapasitor. Jurnal Online Mahasiswa FMIPA, 2(1), 8-13.

Rosi, M., Iskandar, F., Abdullah, M. & Khairurrijal, K. (2013). Synthesis and Characterization of Supercapacitor Using Nano-sized ZnO/Nanoporous Carbon Electrodes and PVA-based Polymer-Hydrogel Electrolytes. Materials Science Forum, 737, 191-196. DOI: https://doi.org/10.4028/www.scientific.net/MSF.737.191

Rosi, M., Iskandar, F., Abdullah, M. & Khairurrijal, K. (2014). Hydrogel-Polymer Electrolytes Based on Polyvinyl Alcohol and Hydroxyethylcellulose for Supercapacitor Applications. Electrochemical Science, 9, 4251-4256.

Tadda, M. A., Ahsan, A., Shitu, A., Elsergany, M., Thirugnnasambantham, A., Jose, B., Razzaque, M. A. & Norsyahariati, N. D. N. (2016). A review on activated carbon: process, application and prospects. Journal of Advanced Civil Engineering Practice and Research, 2(1), 7-13.

Taer, E., Dewi, P., Sugianto, S., Syech, R., Taslim, R., Salomo, S., Susanti, Y., Purnama, A., Apriwandi, A., Agustino, A. & Setiadi, R. N. (2018). The synthesis of carbon electrode supercapacitor from durian shell based on variations in the activation time. AIP Conference Proceedings, 1927, 030026. DOI: https://doi.org/10.1063/1.5021219

Taer, E., Susanti, Y., Awitdrus, A., Sugianto, S., Taslim, R., Setiadi, R. N., Bahri, S., Agustino, A., Dewi, P. & Kurniasih, B. (2018). The effect of CO2 activation temperature on the physical and electrochemical properties of activated carbon monolith from banana stem waste. AIP Conference Proceedings, 1927, 030016. DOI: https://doi.org/10.1063/1.5021209

Taer, E., Yusra, H., Iwantono, I. & Taslim, R. (2016). Analisa Dimensi, Densitas Dan Kapasitansi Spesifik Elektroda Karbon Superkapasitor Dari Bunga Rumput Gajah Dengan Variasi Konsentrasi Pengaktivan KOH. Spektra: Jurnal Fisika dan Aplikasinya, 1(1), 55-60. DOI: https://doi.org/10.21009/SPEKTRA.011.09

Tetra, O. N., Aziz, H., Emriadi, Ibrahim, S. & Alif, A. (2018). Supercapacitors based on activated carbon and Ionic solution as electrolyte. Jurnal Zarah, 6(1), 39-46. DOI: https://doi.org/10.31629/zarah.v6i1.293

Wang, G., Zhang, L. & Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews 41(2), 797–828. DOI: https://doi.org/10.1039/C1CS15060J

Wijaya, M. & Wiharto, M. (2017). Karakterisasi Kulit buah kakao untuk karbon aktif dan bahan Kimia yang ramah Lingkungan. Jurnal Kimia dan Pendidikan Kimia, 2(1), 66-71.

Yetri, Y., Mursida, M., Dahlan, D., Muldarisnur, M., Taer, E. & Febrielviyenti, F. (2020). Analysis of Characteristics of Activated Carbon from Cacao (Theobroma cacao) Skin Waste for Supercapacitor Electrodes. IOP Conf. Series: Materials Science and Engineering, 990, 012023. DOI: https://doi.org/10.1088/1757-899X/990/1/012023

Yusriwandi, Y., Taer, E. & Farma, R. (2017). Pembuatan dan Karakterisasi Elektroda Karbon Aktif Dengan Karbonisasi Dan Aktivasi Bertingkat Menggunakan Gas CO2 dan Uap Air. Jurnal Ilmiah Edu Research, 6(1), 21-26.

Downloads

Published

2022-07-03

How to Cite

Nuradi, R. F. ., Muldarisnur, M. ., & Yetri, Y. . (2022). Synthesis of Supercapacitor from Cocoa Fruit Peel Activated Carbon for Energy Storage . JURNAL ILMU FISIKA | UNIVERSITAS ANDALAS, 14(2), 86–94. https://doi.org/10.25077/jif.14.2.86-94.2022

Issue

Section

Research Article

Citation Check