Comparison of Deformation Vectors Due to Earthquake in Subduction Zone and Sumatran Fault for Each Phase of Earthquake Cycle


  • Fadilla Monica Universitas Andalas, Indonesia
  • Vira Friska Universitas Andalas, Indonesia
  • Deasy Arisa National Research and Innovation Agency, Indonesia
  • Marzuki Marzuki Universitas Andalas, Indonesia



deformation vector, InaCORS, SuGAr, Sumatra, earthquake


This study compares the deformation in West Sumatra due to the earthquakes in the subduction zone and the Sumatran Fault. The Mw6.0 Mentawai earthquake 2019 with a thrust fault mechanism and the Mw5.4 South Solok earthquake 2019 with a strike-slip fault mechanism were used as case studies for the subduction zone and Sumatran Fault, respectively. The deformation was observed using 12 SuGAr (Sumatra GPS Array) and 8 InaCORS (Indonesian Continuously Operating Reference Station) stations, which were processed using GAMIT/GLOBK software. There are differences in the deformation vectors of the two earthquakes. The Mentawai earthquake experienced larger energy accumulation than the South Solok earthquake. The coseismic phase of the Mentawai earthquake experienced the largest horizontal shift at the SLBU station, which was 15.48 mm in the direction of S29.96W, while the South Solok earthquake is found to horizontally shift the CSDH station at the size of 5.75 mm towards S11.45E. The postseismic phase of the Mentawai earthquake lasted 60 days, longer than the South Solok earthquake (20 days). The difference in deformation characteristic between these two earthquakes found in this study will be valuable information in modeling earthquakes in Sumatra.


Download data is not yet available.

Author Biography

Marzuki Marzuki, Universitas Andalas

  Department of Physics, Universitas Andalas, west Sumatra, Indonesia  


Aditiya, A., Efendi, J., & Syafii, A. (2014). InaCORS: Infrastructure of GNSS CORS in Indonesia. An Article in FIG Congress, 16–21.

Alif, S. M., Fattah, E. I., & Kholil, M. (2020). Geodetic slip rate and locking depth of east Semangko Fault derived from GPS measurement. Geodesy and Geodynamics, 11(3), 222–228.

Catherine, J. K., & Gahalaut, V. K. (2007). A glimpse of earthquake cycle in the Sumatra region. Current Science, 92(1), 114–118.

Efendi, J., Prijatna, K., & Meilano, I. (2018). Analysis of the 2007 Sianok Earthquake Coseismic Shift Based on GPS Observation Data in 1993-2007 and the Effect on the 2013 SRGI. Reka Geomatika, 2018(1), 1-18.

Friska, V., Arisa, D., Marzuki, M., & Monica, F. (2022). Indo-Australian Plate Velocity Measurement During Interseismic Phase in 2010-2014 Using Sumatran Gps Array (Sugar) Data. Springer Proceedings in Physics, Vol. 275, Springer, Singapore.

Govers, R., Furlong, K. P., Van de Wiel, L., Herman, M. W., & Broerse, T. (2018). The geodetic signature of the earthquake cycle at subduction zones: Model constraints on the deep processes. Reviews of Geophysics, 56(1), 6–49.

Gualandi, A., Perfettini, H., Radiguet, M., Cotte, N., & Kostoglodov, V. (2017). GPS deformation related to the Mw 7.3, 2014, Papanoa earthquake (Mexico) reveals the aseismic behavior of the Guerrero seismic gap. Geophysical Research Letters, 44(12), 6039–6047.

Haridhi, H. A., Huang, B.-S., Kuo-Liang, W., Denzema, D., Prasetyo, R. A., & Chao-Shing, L. (2018). A study of large earthquake sequences in the Sumatra subduction zone and its possible implications. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 29(6), 635-652.

Herring, T. A., King, R. W., & McCluskey, S. C. (2010). Introduction to GAMIT/GLOBK, release 10.4. Massachusetts Institute of Technology, Cambridge.

Iqbal, R., Arisa, D., & Setiadi, B. (2021). Deformation analysis for Padang earthquake using GPS data. Journal of Physics: Conference Series, 1876(1), 12029.

Krasnoperov, R. (2009). Earth crust motion and deformation analysis based on space geodesy methods. Russian Journal of Earth Sciences, 11(1), 1–3.

Marzuki, M., Ramadhan, R., Friska, V., Primadona, H., Ramadhan, R. A., Monica, F., Arisa, D., & Namigo, E. L. (2022). Dynamics of West Coast of Sumatra and Island Arc Mentawai during the Coseismic Phase of the Mentawai Mw7.8 25 October 2010 Earthquake. Journal of Physics: Conference Series, The 4th International Conference on Research and Learning of Physics (ICRLP 2021) (in press).

Masykur, M. (2021). Analysis of accuracy the InaCORS BIG online post-processing service. Applied Geomatics, 13(2), 227–233.

McLoughlin, I. V., Wong, K. J., & Tan, S. L. (2011). Data collection, communications and processing in the Sumatran GPS array (SuGAr). Proceedings of the World Congress on Engineering, 2, 6–8.

Monica, F., Arisa, D., Marzuki, M., & Friska, V. (2022). Deformation Analysis During The Pre-, Co- and Post-Seismic Phases Associated with The 2019 Mw6.0 Mentawai Earthquake Using Satellite Geodetic Technology from Sumatran GPS Array (SuGAr) Data. Springer Proceedings in Physics, Vol. 275, Springer, Singapore.

Natawidjaja, D.H., Sieh, K., Galetzka, J., & Suwargadi, B.W. (2007). Interseismic deformation above the Sunda Mehathrust recorded in coral microatolls of the Mentawai Islands, West Sumatra. Journal of Geophysical Research, 112, 1-27.

Perfettini, H., & Avouac, J. P. (2014). The seismic cycle in the area of the 2011 Mw9. 0 Tohoku‐Oki earthquake. Journal of Geophysical Research: Solid Earth, 119(5), 4469–4515.

Prawirodirdjo, L., Bock, Y., Genrich, J. F., Puntodewo, S. S. O., Rais, J., Subarya, C., & Sutisna, dan S. (2000). One century of tectonic deformation along the Sumatran fault from triangulation and Global Positioning System surveys. Journal of Geophysical Research: Solid Earth, 105(B12), 28343–28361.

Qiu, Q., Feng, L., Hermawan, I., & Hill, E. M. (2019). Coseismic and postseismic slip of the 2005 Mw 8.6 Nias‐Simeulue earthquake: Spatial overlap and localized viscoelastic flow. Journal of Geophysical Research: Solid Earth, 124(7), 7445–7460.

Rahayu, T., Sinambela, M., Margono, M., Simanullang, A. T., & Ainun, A. R. (2020). The Tectonic Description of Northern Sumatra. Yayasan Kita Menulis.

Rifai, L. D., & Pudja, I. P. (2010). Preliminary Study of the Relationship between Continental Earthquakes and Oceanic Earthquakes in Sumatra. Jurnal Meteorologi Dan Geofisika, 11(2), 147–153.

Scholl, D. W., Kirby, S. H., von Huene, R., Ryan, H., Wells, R. E., & Geist, E. L. (2015). Great (≥ Mw8. 0) megathrust earthquakes and the subduction of excess sediment and bathymetrically smooth seafloor. Geosphere, 11(2), 236–265.

Sieh, K., & Natawidjaja, D. (2000). Neotectonics of the Sumatran fault, Indonesia. Journal of Geophysical Research: Solid Earth, 105(B12), 28295–28326.

Simoes, M., Avouac, J. P., Cattin, R., & Henry, P. (2004). The Sumatra subduction zone: A case for a locked fault zone extending into the mantle. Journal of Geophysical Research: Solid Earth, 109(B10), 1-16.

Sinaga, S. S., Awaluddin, M., & Sabri, L. M. (2020). Coseismic Deformation Analysis of the Nias Earthquake 3 June 2019 Using CORS BIG and SuGAR data. Jurnal Geodesi Undip, 9(4), 12–21.

Susilo, S., Abidin, H. Z., Meilano, I., Prijatna, K., Sapiie, B., Wijanarto, A. B., & Efendi, J. (2016). On the Development of Deformation Model for the Indonesian Geospatial Reference System (IGRS) 2013. FIG Working Week.

Tong, X., Sandwell, D. T., & Schmidt, D. A. (2018). Surface creep rate and moment accumulation rate along the Aceh segment of the Sumatran fault from L‐band ALOS‐1/PALSAR‐1 observations. Geophysical Research Letters, 45(8), 3404–3412.

Wang, X., Liu, X., Zhao, D., Liu, B., Qiao, Q., Zhao, L., & Wang, X. (2022). Oceanic plate subduction and continental extrusion in Sumatra: Insight from S-wave anisotropic tomography. Earth and Planetary Science Letters, 580, 117388.

Wessel, P., & Smith, W. H. F. (1999). The generic mapping tools (GMT). Technical Reference and Cookbook, University of Hawaii, USA.




How to Cite

Monica, F. ., Friska, V., Arisa, D. ., & Marzuki, M. (2022). Comparison of Deformation Vectors Due to Earthquake in Subduction Zone and Sumatran Fault for Each Phase of Earthquake Cycle. Jurnal Ilmu Fisika, 14(2), 73–85.



Research Article

Citation Check