Statistical Comparison of IMERG Precipitation Products with Optical Rain Gauge Observations over Kototabang, Indonesia

Authors

  • Helmi Yusnaini Department of Physics, Universitas Andalas, Limau Manis, Padang 25163, Indonesia., Indonesia
  • Ravidho Ramadhan Department of Physics, Universitas Andalas, Limau Manis, Padang 25163, Indonesia., Indonesia
  • Marzuki Marzuki Department of Physics, Universitas Andalas, Limau Manis, Padang 25163, Indonesia, Indonesia https://orcid.org/0000-0003-0266-812X
  • Ayu Putri Ningsih Department of Physics, Universitas Andalas, Limau Manis, Padang 25163, Indonesia, Indonesia
  • Hiroyuki Hashiguchi Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan., Japan https://orcid.org/0000-0001-8033-0955
  • Toyoshi Shimomai Department of Electronic and Control Systems Engineering, Shimane University, Shimane, Japan., Japan
  • Mutya Vonnisa Department of Physics, Universitas Andalas, Limau Manis, Padang 25163, Indonesia., Indonesia
  • Harmadi Harmadi Department of Physics, Universitas Andalas, Limau Manis, Padang 25163, Indonesia., Indonesia
  • Wiwit Suryanto Department of Physics, Universitas Gajah Mada, Yogyakarta, 55281, Indonesia., Indonesia
  • Sholihun Sholihun Department of Physics, Universitas Gajah Mada, Yogyakarta, 55281, Indonesia., Indonesia

DOI:

https://doi.org/10.25077/jif.14.1.10-20.2022

Abstract

Satellite-based precipitation estimates play a crucial role in many hydrological and numerical weather models, especially to overcome the scarcity of rain gauge data. Globally gridded rainfall product from Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (GPM) (IMERG) has been used in a wide range of hydrological applications. However, the IMERG is inherently prone to errors and biases. This study evaluated the performance of the IMERG-Final run (IMERG-F) product to estimate rainfall in a mountainous area of Sumatra. Validation was carried out using optical rain gauge (ORG) data for 15 years (2002-2016), at Kototabang, West Sumatra, Indonesia. In general, IMERG-F overestimated rainfall in all time scales. The longer the time scale was, the better the performance of IMERG-F we obtained. This feature was indicated by all quantities of continuous and categorical statistical matrices used. The performance of IMERG-F was lower than in other areas of the Maritime Continent, except for the probability of detection (POD) value. IMERG-F could detect rain very well, including for daily and hourly data, but the false alarm rate (FAR) was also relatively high. Such high FAR value may indicate a significant small-scale spatial rainfall variability in mountainous area of Sumatra.

Downloads

Download data is not yet available.

References

Alexander, S., Tsuda, T., Furumoto, J., Shimomai, T., Kozu, T., & Kawashima, M. (2006). A statistical overview of convection during the first CPEA campaign. Journal of the Meteorological Society of Japan. Ser. II, 84, 57–93.

Azka, M. A., Sugianto, P. A., Silitonga, A. K., & Nugraheni, I. R. (2018). Uji akurasi produk estimasi curah hujan Satelit GPM IMERG di Surabaya, Indonesia. Jurnal Sains & Teknologi Modifikasi Cuaca, 19(2), 83–88.

Dembélé, M., & Zwart, S. J. (2016). Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. International Journal of Remote Sensing, 37(17), 3995–4014.

Faisol, A., Budiyono, B., Indarto, I., & Novita, E. (2019). Evaluasi Data Hujan Harian Global Precipitation Measurement (GPM) versi ke-6 di Provinsi Papua Barat. LSP-Conference Proceeding

Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., & Iguchi, T. (2014). The global precipitation measurement mission. Bulletin of the American Meteorological Society, 95(5). https://doi.org/10.1175/BAMS-D-13-00164.1

Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin, E. J., Sorooshian, S., Tan, J., & Xie, P. (2019). NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD) Version 06. National Aeronautics and Space Administration (NASA), March.

Khodadoust Siuki, S., Saghafian, B., & Moazami, S. (2017). Comprehensive evaluation of 3-hourly TRMM and half-hourly GPM-IMERG satellite precipitation products. International Journal of Remote Sensing, 38(2). https://doi.org/10.1080/01431161.2016.1268735

Kozu, T., Reddy, K. K., Mori, S., Thurai, M., Ong, J. T., Rao, D. N., & Shimomai, T. (2006). Seasonal and diurnal variations of raindrop size distribution in Asian monsoon region. Journal of the Meteorological Society of Japan. Ser. II, 84, 195–209.

Lee, J., Lee, E. H., & Seol, K. H. (2019). Validation of Integrated MultisatellitE Retrievals for GPM (IMERG) by using gauge-based analysis products of daily precipitation over East Asia. Theoretical and Applied Climatology, 137(3–4). https://doi.org/10.1007/s00704-018-2749-1

Liu, C. Y., Aryastana, P., Liu, G. R., & Huang, W. R. (2020). Assessment of satellite precipitation product estimates over Bali Island. Atmospheric Research, 244. https://doi.org/10.1016/j.atmosres.2020.105032

Mahmoud, M. T., Hamouda, M. A., & Mohamed, M. M. (2019). Spatiotemporal evaluation of the GPM satellite precipitation products over the United Arab Emirates. Atmospheric Research, 219, 200–212.

Mahmoud, M. T., Mohammed, S. A., Hamouda, M. A., & Mohamed, M. M. (2021). Impact of topography and rainfall intensity on the accuracy of imerg precipitation estimates in an arid region. Remote Sensing. https://doi.org/10.3390/rs13010013

Mahmoud, M. T., Al-Zahrani, M. A., & Sharif, H. O. (2018). Assessment of global precipitation measurement satellite products over Saudi Arabia. Journal of Hydrology, 559. https://doi.org/10.1016/j.jhydrol.2018.02.015

Marzuki, M., Toshiaki, K., Toyoshi, S., Walter L, R., Hiroyuki, H., & Yoshiaki, S. (2009). Diurnal variation of rain attenuation obtained from measurement of raindrop size distribution in equatorial Indonesia. IEEE Transactions on Antennas and Propagation, 57(4 PART 2). https://doi.org/10.1109/TAP.2009.2015812

Marzuki, M., Randeu, W. L., Kozu, T., Shimomai, T., Hashiguchi, H., & Schönhuber, M. (2013a). Raindrop axis ratios, fall velocities and size distribution over Sumatra from 2D-Video Disdrometer measurement. Atmospheric Research, 119, 23–37.

Marzuki, M., Hashiguchi, H., Yamamoto, M. K., Yamamoto, M., Mori, S., Yamanaka, M. D., Carbone, R. E., & Tuttle, J. D. (2013b). Cloud episode propagation over the Indonesian Maritime Continent from 10 years of infrared brightness temperature observations. Atmospheric Research, 120, 268–286.

Marzuki, M., Hashiguchi, H., Shimomai, T., & Randeu, W. L. (2016). Cumulative distributions of rainfall rate over Sumatra. Progress In Electromagnetics Research M, 49. https://doi.org/10.2528/PIERM16043007

Marzuki, M., Hiroyuki, H., Mutya, V., Harmadi, H., Muzirwan, M., Sugeng, N., & Meri, Y. (2018). Z-R Relationships for Weather Radar in Indonesia from the Particle Size and Velocity (Parsivel) Optical Disdrometer. Progress in Electromagnetics Research Symposium, 2018-Augus. https://doi.org/10.23919/PIERS.2018.8597693

Marzuki, M., Suryanti, K., Yusnaini, H., Tangang, F., Muharsyah, R., Vonnisa, M., & Devianto, D. (2021a). Diurnal variation of precipitation from the perspectives of precipitation amount, intensity and duration over Sumatra from rain gauge observations. International Journal of Climatology, 41(8). https://doi.org/10.1002/joc.7078

Marzuki, M., Helmi, Y., Fredolin, T., Robi, M., Mutya, V., & Harmadi, H. (2021b). Land - Sea Contrast of Diurnal Cycle Characteristics and Rain Event Propagations over Sumatra According to Different Rain Duration and Seasons. Manuscript Submitted for Publication.

Marzuki, M., Helmi, Y., Ravidho, R., Fredolin, T., Abdul, A. B. A., Hiroyuki, H., Toyoshi, S., & Mutya, V. (2021c). Diurnal variation of precipitation over a mountainous area of Sumatra Island from 15â€year optical rain gauge data. Manuscript Submitted for Publication.

Moazami, S., & Najafi, M. R. (2021). A comprehensive evaluation of GPM-IMERG V06 and MRMS with hourly ground-based precipitation observations across Canada. Journal of Hydrology, 594. https://doi.org/10.1016/j.jhydrol.2020.125929

Mohsan, M., Acierto, R. A., Kawasaki, A., & Zin, W. W. (2018). Preliminary assessment of GPM satellite rainfall over Myanmar. Journal of Disaster Research, 13(1). https://doi.org/10.20965/jdr.2018.p0022

Ning, S., Song, F., Udmale, P., Jin, J., Thapa, B. R., & Ishidaira, H. (2017). Error Analysis and Evaluation of the Latest GSMap and IMERG Precipitation Products over Eastern China. Advances in Meteorology. https://doi.org/10.1155/2017/1803492

OSI. (n.d.). Optical Rain Gauge. Retrieved November 20, 2021, from https://catalog.opticalscientific.com/item/weather-sensors/org-optical-rain-gauge/org-815-ds

Ravidho, R., Marzuki, M., Helmi, Y., Ayu, P. N., Hiroyuki, H., Toyoshi, S., Vonnisa, M., Ulfah, S., Suryanto, W., & Sholihun, S. (2022). Ground validation of GPM IMERG-F precipitation products with the point rain gauge records on the extreme rainfall over a mountainous area of Sumatra Island. Jurnal Penelitian Pendidikan IPA, 8(1), in-press.

Sharifi, E., Steinacker, R., & Saghafian, B. (2018). Multi time-scale evaluation of high-resolution satellite-based precipitation products over northeast of Austria. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2018.02.020

Skofronick-Jackson, G., Petersen, W. A., Berg, W., Kidd, C., Stocker, E. F., Kirschbaum, D. B., Kakar, R., Braun, S. A., Huffman, G. J., & Iguchi, T. (2017). The Global Precipitation Measurement (GPM) mission for science and society. Bulletin of the American Meteorological Society, 98(8), 1679–1695.

Sungmin, O., Foelsche, U., Kirchengast, G., Fuchsberger, J., Tan, J., & Petersen, W. A. (2017). Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrology and Earth System Sciences, 21(12). https://doi.org/10.5194/hess-21-6559-2017

Tan, M. L., & Duan, Z. (2017). Assessment of GPM and TRMM precipitation products over Singapore. Remote Sensing, 9(7). https://doi.org/10.3390/rs9070720

Tan, M. L., Samat, N., Chan, N. W., & Roy, R. (2018). Hydro-meteorological assessment of three GPM Satellite Precipitation Products in the Kelantan River Basin, Malaysia. Remote Sensing. https://doi.org/10.3390/rs10071011

Tan, M. L., & Santo, H. (2018). Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmospheric Research, 202. https://doi.org/10.1016/j.atmosres.2017.11.006

Tang, G., Ma, Y., Long, D., Zhong, L., & Hong, Y. (2016). Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2015.12.008

Uysal, G., Hafizi, H., & Sorman, A. A. (2021). Spatial and temporal evaluation of multiple gridded precipitation datasets over complex topography and variable climate of Turkey. EGU General Assembly Conference Abstracts, EGU21-14239.

Wang, W., Lu, H., Zhao, T., Jiang, L., & Shi, J. (2017). Evaluation and comparison of daily rainfall from latest GPM and TRMM products over the Mekong River Basin. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(6). https://doi.org/10.1109/JSTARS.2017.2672786

Xu, S., Shen, Y., & Niu, Z. (2019). Evaluation of the IMERG version 05B precipitation product and comparison with IMERG version 04A over mainland China at hourly and daily scales. Advances in Space Research, 63(8). https://doi.org/10.1016/j.asr.2019.01.014

Downloads

Published

2021-11-28

How to Cite

Yusnaini, H., Ramadhan, R., Marzuki, M., Ningsih, A. P., Hashiguchi, H., Shimomai, T., Vonnisa, M., Harmadi, H., Suryanto, W., & Sholihun, S. (2021). Statistical Comparison of IMERG Precipitation Products with Optical Rain Gauge Observations over Kototabang, Indonesia. Jurnal Ilmu Fisika, 14(1), 10–20. https://doi.org/10.25077/jif.14.1.10-20.2022

Issue

Section

Research Article

Citation Check