Analysis of Fill Weight, Water Absorption and Density of Plasterboard Ceiling Made of Banana Midrib Fiber

Authors

  • Ana Komariyah Physics Study Program, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Surabaya 60231, Indonesia, Indonesia
  • Sisy Anggelina Aulia Aska Physics Study Program, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Surabaya 60231, Indonesia, Indonesia
  • Arifa Insani Navalia Physics Study Program, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Surabaya 60231, Indonesia, Indonesia
  • Lydia Rohmawati Physics Study Program, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Surabaya 60231, Indonesia, Indonesia
  • Woro Setyarsih Physics Study Program, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Surabaya 60231, Indonesia, Indonesia

DOI:

https://doi.org/10.25077/jif.14.1.21-27.2022

Abstract

The plasterboard ceiling is one of the applications of fiber-based composite materials. Asbestos fibers, usually used to make plasterboard ceilings, are unfortunately harmful to humans. We propose using banana midrib fibers that are environment-friendly to replace asbestos fibers. This research investigates the influence of the percentage of banana midrib fibers on the fill weight, water absorption, and density of plasterboard ceilings. The fibers extracted from banana midrib were immersed in 40 mL of 1 M NaOH and then used to prepare plasterboard ceiling samples with different fiber percentages, namely 0.0%; 1.0%; 1.5%; 2% 2.5%. The fill weight, water absorption, and density of plasterboard samples were measured and then compared to Indonesian National Standard. The highest fill weight of 1.52 g/cm3 was obtained with a 1.0% percentage of banana midrib fibers for the plasterboard sample. In contrast, the highest water absorption of 11.84% was obtained at 2.5% banana midrib fibers. The more fibers added, the better the seepage of the plasterboard ceilings. 

Downloads

Download data is not yet available.

References

Al-Rifaie, W. N., & Al-Niami, M. (2016). Mechanical performance of date palm fibre-reinforced gypsums. Innovative Infrastructure Solutions, 1(1), 1–7.

Alamsyah, M. H., & Gundara, G. (2020). Analisis Sifat Mekanik Komposit Bahan Kampas Rem Dengan Penguat Serbuk Kayu Jati Dan Serbuk Kuningan. REM (Rekayasa Energi Manufaktur) Jurnal, 5(1), 9–13.

Alves, C., Silva, A. J., Reis, L. G., Freitas, M., Rodrigues, L. B., & Alves, D. E. (2010). Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production, 18(4), 313–327.

Ang, P. S. E., Ibrahim, A. H. I., & Abdullah, M. S. (2020). Preliminary Study of Ceiling Board from Composite Material of Rice Husk, Rice Husk Ash and Waste Paper. Progress in Engineering Application and Technology, 1(1), 104–115.

Aramide, F. O., Atanda, P. O., & Olorunniwo, O. O. (2012). Mechanical properties of a polyester fibre glass composite. International Journal of Composite Materials, 2(6), 147–151.

Asdrubali, F., Schiavoni, S., & Horoshenkov, K. V. (2012). A review of sustainable materials for acoustic applications. Building Acoustics, 19(4), 283–311.

Badan Standardisasi Nasional. (2006). Papan partikel. Standar Nasional Indonesia (Papan Serat), 1–23.

Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29, 394–416.

Chinta, S. K., Katkar, P. M., & Mirji, M. J. (2012). Natural fibres-reinforced in false ceiling. International Journal of Advanced Research in IT and Engineering, 1(5), 47–55.

Cicala, G., Rosa, D. La, Musarra, M., Saccullo, G., Banatao, R., & Pastine, S. (2016). Recyclable epoxy resins: An example of green approach for advanced composite applications. AIP Conference Proceedings, 1736(1), 20027.

Deng, Y., Paraskevas, D., Tian, Y., Van Acker, K., Dewulf, W., & Duflou, J. R. (2016). Life cycle assessment of flax-fibre reinforced epoxidized linseed oil composite with a flame retardant for electronic applications. Journal of Cleaner Production, 133, 427–438.

dos Santos Pegoretti, T., Mathieux, F., Evrard, D., Brissaud, D., & de França Arruda, J. R. (2014). Use of recycled natural fibres in industrial products: a comparative LCA case study on acoustic components in the Brazilian automotive sector. Resources, Conservation and Recycling, 84, 1–14.

Endriatno, N., Kadir, K., & Alim, A. (2015). Analisis Sifat Mekanik Komposit Sandwich Serat Pelepah Pisang dengan Core Kayu Biti. Dinamika: Jurnal Ilmiah Teknik Mesin, 6(2).

González-Vallejo, P., Marrero, M., & Solís-Guzmán, J. (2015). The ecological footprint of dwelling construction in Spain. Ecological Indicators, 52, 75–84.

Irawan, A. P., & Sukania, I. W. (2015). Tensile strength of banana fiber reinforced epoxy composites materials. Applied Mechanics and Materials, 776, 260–263.

La Rosa, A. D., Cozzo, G., Latteri, A., Mancini, G., Recca, A., & Cicala, G. (2013). A comparative life cycle assessment of a composite component for automotive. Chemical Engineering, 32.

Malau, J. C., Sucipto, T., & Iswanto, A. H. (2016). Kualitas Papan Partikel Batang Pisang Barangan Berdasarkan Variasi Kadar Perekat Phenol Formaldehida. Peronema Forestry Science Journal, 5(1), 1–9.

Nurhidayat, A. (2013). Kajian Ketangguhan Impak Komposit Sandwich Serat Aren-Polyester dengan Core Gedebog Pohon Pisang.

Patandung, P. (2018). Pengembangan Pembuatan Plafon Dari Abu Sekam Padi Dengan Menggunakan Serat Sabut Kelapa. Jurnal Penelitian Teknologi Industri, 8(1), 39–50.

Prasetyo, D. A. (2017). Pemanfaatan Serat Kulit Jagung sebagai Bahan Campuran Pembuatan Plafon Eternit. Rekayasa Teknik Sipil, 1(1/REKAT/17).

Rukini, A. (2019). Analisis Kelayakan Sifat Fisik dan Mekanik Komposit Gipsum Berpenguat Serat Alam Sisal Sumbawa sebagai Papan Plafon. Jurnal Tambora, 3(3), 20–23.

Silalahi, R., Sinuhaji, P., & Simbolon, T. R. (2015). Pembuatan dan Karakterisasi Komposit Serat Kulit Jagung-Poliester dengan Metode Chopped Strand Mat. Medan: Universitas Sumatera Utara.

Sukoko, T. E. (2017). Pengaruh Penambahan Serat Kulit Bambu pada Plafon Gipsum dengan Perekat Poliester. Rekayasa Teknik Sipil, 1(1/REKAT/17).

Surbakti, E. J. (2020). Pembuatan Dan Karakterisasi Komposit Serat Kulit Jagung Dengan Matriks Epoksi.

Waghmare, P. M., Bedmutha, P. G., & Sollapur, S. B. (2017). Review on mechanical properties of banana fiber biocomposite. Int. J. Res. Appl. Sci. Eng. Technol, 5(10), 847.

Downloads

Published

2021-12-15

How to Cite

Komariyah, A., Aska, S. A. A., Navalia, A. I., Rohmawati, L., & Setyarsih, W. (2021). Analysis of Fill Weight, Water Absorption and Density of Plasterboard Ceiling Made of Banana Midrib Fiber. Jurnal Ilmu Fisika, 14(1), 21–27. https://doi.org/10.25077/jif.14.1.21-27.2022

Issue

Section

Research Article

Citation Check