Synthesis and Characterization of HPMpFBP Using Raman Spectroscopy, Nuclear Magnetic Resonance (NMR) Spectroscopy, and FTIR

Authors

  • Wilda Triputri Yusri Department of Physics, Padang State University, Padang, Indonesia, Indonesia
  • Yulkifli Yulkifli Department of Physics, Padang State University, Padang, Indonesia
  • Alizar Alizar Department of Chemistry, Padang State University, Padang, Indonesia, Indonesia
  • Illyas Md Isa Department of Chemistry, Sultan Idris University of Education, Tanjung Malim, Malaysia, Malaysia

DOI:

https://doi.org/10.25077/jif.13.2.109-117.2021

Abstract

Synthesis is one of the models for the formation of a new drug or compound with the aim of obtaining better activity at an economical price. HPMpFBP has been synthesized by mixing of 1-phenyl-3-methyl-5-pyrazolone and 4-fluorobenzoyl chloride. In the synthesis of HPMpFBP, a new compound namely 1-phenyl-3-methyl-4-(4-fluorobenzoyl)-5-pyrozolone has been obtained. The sample then characterized by non-invasive methods using Raman spectroscopy, Nuclear Magnetic Resonance (NMR) Spectroscopy and FTIR. Through this characterization process, wavelength information, chemical shift, and functional groups (chemical structure) of HPMpFBP samples were obtained. HPMpFBP has a chemical structure of C17H13N2O2F, the highest wavelength carried out by characterization using Raman is 1643.91 cm-1, the highest chemical shift characterized by using NMR (Nuclear Magnetic Resonance) is 7.8628 ppm, and the functional groups identified by using FTIR are (O-H, C-H, C=C, C=O, C-N). Information from the HPMpFBP sample characterization process using mentioned characterization methods was compared with previously reported results.

Downloads

Download data is not yet available.

References

Asnawati, A., Indarti, D., & Mulyono, T. (2013). Amperometric biosensor for glucose detection based-on immobilisation of glucose oxidase in acetic cellulose membrane using ferrocene as mediator. Jurnal Ilmu Dasar, 14(1), 45–51.

Dachriyanus, P. D. (2004). Structural Analysis of Organic Compounds by Spectroscopy. LPTIK Andalas University.

Fatimura, M. (2017). Tinjauan Teoritis Faktor-Faktor Yang Mempengaruhi Operasi Pada Kolom Destilasi. Jurnal Media Teknik, 11(1).

Holze, R. (2007). E. Smith and G. Dent (eds): Modern Raman spectroscopy—a practical approach, Wiley, Chichester, United Kingdom, 2005, 210 + XI p., 24.95 £; ISBN 0471497940. Journal of Solid State Electrochemistry, 11(4). https://doi.org/10.1007/s10008-005-0062-2

Hore, P. J. (2015). Nuclear magnetic resonance. Oxford University Press, USA.

Jensen, B. S., Meier, H., Lundquist, K., & Refn, S. (1959). The Synthesis of 1-Phenyl-3-methyl-4-acyl-pyrazolones-5. Acta Chemica Scandinavica, 13. https://doi.org/10.3891/acta.chem.scand.13-1668

Lau, W. S. (2011). Infrared Characterization for Microelectronics. In Infrared Characterization for Microelectronics. https://doi.org/10.1142/9789812817464

Meera, R., & Reddy, M. L. P. (2004). Para-substituted 1-phenyl-3-methyl-4-aroyl-5-pyrazolones as chelating agents for the synergistic extraction of thorium(IV) and uranium(VI) in the presence of various crown ethers. Solvent Extraction and Ion Exchange, 22(5). https://doi.org/10.1081/SEI-200030290

Mohd Yazid, S. N. A., Md Isa, I., Abu Bakar, S., Hashim, N., & Ab Ghani, S. (2014). A review of glucose biosensors based on graphene/metal oxide nanomaterials. Analytical Letters, 47(11), 1821–1834.

Mustaffa, A., & Illyas Md Isa., M. I. S. (2011). Determination of Stability of Lanthanide Complexes La(III), Pr(III), Eu(III), Ga(III), Er(III), and Lu(III) with Fluorine 1-phenyl-3- methyl-4-benzoyl-5-pyrozolone (HPMBP) using imaging methods. J. Sains Dan Matematik, 3(2), 1–10.

Petrova, M. A., Kurteva, V. B., & Lubenov, L. A. (2011). Synergistic effect in the solvent extraction and separation of lanthanoids by 4-(4-fluorobenzoyl)-3-methyl-1-phenyl-pyrazol-5-one in the presence of monofunctional neutral organophosphorus extractants. Industrial & Engineering Chemistry Research, 50(21), 12170–12176.

Purwanto, B. T. (2013). Modifikasi Struktur N-Fenilurea Menjadi Senyawa Baru N-Benzoilfenilurea dan 4-Fluorobenzoilfenilurea Serta Uji Aktivitasnya sebagai Penekan Susunan Saraf Pusat. Majalah Berkala Ilmiah Kimia Farmasi, Departemen Kimia Farmasi FF Unair, 2(1), 28–32.

Remya, P. N., Ambili Raj, D. B., & Reddy, M. L. P. (2006). Para-substituted 1-phenyl-3-methyl-4-aroyl-5-pyrazolones as selective extractants for vanadium(V) from acidic chloride solutions. Solvent Extraction and Ion Exchange, 24(6).

https://doi.org/10.1080/07366290600952576

Saleh, M. I., Ahmad, M., & Darus, H. (1990). Solvent extraction of lanthanum (III), europium (III) and lutetium (III) with fluorinated 1-phenyl-3-methyl-4-benzoyl-5-pyrazolones into chloroform. Talanta, 37(7), 757–759.

Sastrohamidjojo, H. (2001). Spectroscopy. Yogyakarta: Liberty Yogyakarta.

Utamiyanti, I. F., Rumhayati, B., & Mulyasuryani, A. (2016). THE DEVELOPMENT OF GLUCOSE SENSOR BASED ON SiO2-CuO MATERIALS USING SCREEN PRINTED CARBON ELECTRODE (SPCE). ALCHEMY Jurnal Penelitian Kimia, 12(1), 50–60.

Wahyuono, R. A., Roekmono, R., Hadi, H., Yuwono, R. A., & Muhimmah, L. C. (2017). Deteksi Kadar Glukosa Dalam Plasma Darah Terpisah Oleh Mikrofluida Terintegrasi Partikel Nano ZnO Berbasis Spektroskopi Inframerah Dan Raman. Jurnal Integrasi Proses, 6(4), 148–154.

Downloads

Published

2021-08-31

How to Cite

Yusri, W. T., Yulkifli, Y., Alizar, A., & Md Isa, I. (2021). Synthesis and Characterization of HPMpFBP Using Raman Spectroscopy, Nuclear Magnetic Resonance (NMR) Spectroscopy, and FTIR. JURNAL ILMU FISIKA | UNIVERSITAS ANDALAS, 13(2), 109–117. https://doi.org/10.25077/jif.13.2.109-117.2021

Issue

Section

Research Article

Citation Check