Characterization of (Mg1.0Zn0.0)TiO3+4 wt%Bi2O3 Ceramics for Application as Resonator in Dielectric Resonator Oscillator Circuit

Authors

  • Lailatul Izza Physics Study Program, Department of Physics, FMIPA, Universitas Negeri Surabaya (UNESA), Surabaya 60231, Indonesia, Indonesia
  • Frida Ulfah Ermawati Physics Study Program, Department of Physics, FMIPA, Universitas Negeri Surabaya (UNESA), Surabaya 60231, Indonesia, Indonesia

DOI:

https://doi.org/10.25077/jif.13.2.62-69.2021

Abstract

MgTiO3-based ceramics have potential applications in telecommunications systems at microwave frequencies, such as resonators in dielectric resonator oscillator (DRO) circuits. This paper reports the results of (Mg1.0Zn0.0)TiO3+4wt% Bi2O3 (abbreviated MZT0+4wt%Bi2O3) ceramic fabrication to assess its potential to be used as a resonator in the DRO circuit. We characterized its structure, microstructure, and bulk density. The addition of 4wt%Bi2O3 to MZT0 crystalline powder was carried out via ball-mill. The milled powder was compacted using a die press to obtain pellets. All pellets were sintered at 1100ºC for 4, 6, and 8 h. Ceramic structures of the 4 and 6 h holding time consists of MgTiO3 phase (94.33±2.68) and (95.34±1.95)% molar respectively, while the rest phase was TiO2. The 8-h ceramic structure comprises (96.11±2.94) % molar MgTiO3 accompanied by Mg2TiO5 and TiO2. The ceramics' microstructure consists of a cluster of grains with an average diameter of 1.32-2.24 μm and pores. Bulk density decreases with the increase of sintering holding time. The DRO characterization records a resonance signal each at 5.207, 5.005, and 5.121GHz with power approaching 0 dBm, suggesting that the MZT0+4wt%Bi2O3 ceramics can be used as a resonator in the DRO circuit working in microwave frequencies, especially at 5.0-5.2GHz.

Downloads

Download data is not yet available.

References

Adikaning, Sefrilita R. & Suasmoro, D. (2016). Mg0,8Zn0,2TiO3 Ceramics Synthesize as Dielectric Material by Attritor Mill Mixing Methods. Institut Teknologi Sepuluh Nopember (ITS)

Anugraha, V. G., & Widyastuti. (2014). Pengaruh Komposisi Sn dan Variasi Tekanan Kompaksi terhadap Densitas dan Kekerasan Komposit Cu-Sn untuk Aplikasi Proyektil Peluru Frangible dengan Metode Metalurgi Serbuk. Jurnal Teknik POMITS, 3(1), pp. 2

Ermawati, F. U. (2017). Fisika Bahan Keramik. Buku Ajar Mahasiswa, Surabaya: UNESA UniPress Surabaya. Sertifikat Hak Cipta RI, No. Pencatatan 000104991 Tahun 2018

Ermawati, F. U. (2018). Difraksi Sinar-X: Teori dan Analisis Data Eksperimen. Buku Ajar Mahasiswa, Surabaya: UNESA UniPress Surabaya.

Ermawati, F. U., Pratapa S., Suasmoro S., Hübert T., & Banach, U. (2016). Preparation and Structural Study of Mg1−xZnxTiO3 Ceramics and Their Dielectric Properties from 1 Hz to 7.7 GHz. Journal of Materials Science: Materials in Electronics, 27(7), 6637–45.

Ermawati, F. U., Wahyu Y., Kristiantoro T., & Dedi. (2020a). Blok Diagram Sirkuit DRO dan Blok Diagram Pengukuran Frekuensi Respon dan Daya Luaran DRO Pada C-Band untuk Keramik Dielektrik (Mg1−xZnx)TiO3. Modul. Sertifikat Hak Cipta RI, No. Pencatatan 000203671 Tahun 2020

Ermawati, F. U., Wahyu Y., Kristiantoro T., & Dedi. (2020b) “Metode Fabrikasi Keramik Dielektrik (Mg1-xZnx)TiO3 sebagai Dielektrik Resonator Osilator yang bekerja pada Pita Câ€. Paten Indonesia. No. Permohonan P00202006498, 04 Sept. 2020.

Ermawati, F. U. (2020c). The Response of (Mg0,6Zn0,4)TiO3 Ceramic System as A Dielectric Resonator Oscillator at C-Band. Makalah: Seminar Nasional Fisika 2020, Jurusan Fisika, FMIPA Universitas Negeri Surabaya.

Hunter, B. (1998). Rietica: A Visual Rietvield Program. Newsletter for International Union of Crystallography. Commission on Powder Diffraction 21.

Ishida E., Miura K., Shoji Y., Yokoi H., Mizumoto T., Nishiyama N., & Arai S. (2017). Amorphus-Si Waveguide on a Garnet Magneto-Optical Isolator with a TE Mode Nonreciprocal Phase Shift. Optical Express, 25 (1), 452-462.

Johan, A. & Ramlan. (2008). Karakterisasi Konduktivitas, Porositas dan Densitas Bahan Keramik Na-βâ€-Al2O3 dari Komposisi Na2O 13% dan Al2O3 87% dengan Variasi Waktu Penahanan. Jurnal Sain, 11(3), 544-551.

Olokede, Seyi S., Zaki, Syazana B. B. M., Ain, Nor M. M. M. F., & Ahmad, Z. A. (2017). Design of Negative Conductance Resonator Oscillator for X-Band Applications. Radioelectronics and Communications Systems, 60 (9), 413-422.

Rani, S. R. A. (2016). Mg0,8Zn0,2TiO3 Ceramics Synthesize as Dielectric Material by Attritor Mill Mixing Methods. Bachelor thesis, Department of Physics, Faculty of Mathematics and Natural Sciences. Institut Teknologi Sepuluh November: Surabaya

Rettiningtyas, N., & Ermawati F. U. (2020). Sintesis dan Fabrikasi Keramik (Mg0,8Zn0,2)TiO3+2wt% Bi2O3 sebagai Bahan Dielektrik serta Karakterisasi Struktur dan Densitasnya Akibat Variasi Waktu Tahan Sinter. Jurnal Inovasi Fisika Indonesia (IFI), 09, 25–33.

Rostianbudi, F. Y., & Ermawati, F. U. (2020). Fabrikasi Dan Karakterisasi Struktur Dan Densitas Keramik (Mg0,5Zn0,5)TiO3+x wt% sebagai Kandidat Material Dielektrik. Jurnal Inovasi Fisika Indonesia (IFI), 09, 3–8.

Skyworks. (2017). Properties, Test Methods, and Mounting of Dielectric Resonators: 2. https://cm-sitecore.skyworksinc.com/-/media/SkyWorks/Documents/Products/2501-2600/Properties_and_Mounting_of_Dielectric_Resonators_202803B.pdf. Retrieved on February 11, 2020.

Wenas, D. R. (2020). Analisis Pandu Gelombang Menggunakan Bragg Reflector sebagai Cladding. Jurnal Fista (Fisika dan Terapannya). 1(1) pp. 7

Wibisono, G. & Firmansyah, T. (2010). Perancangan Dielectric Resonator Oscillator Untuk Mobile Wimax Pada Frekuensi 2,3 Ghz Dengan Penambahan Coupling λ/4. in IEEE Region 10 Conference on TENCON (IEEE) July 2015: 140–44.

Wu, Shunhua, Wei, Xuesong, Wang, Xiaoyong, Yang, Hongxing, & ShunqiGao. (2013). Effect Bi2O3 additive on the microstructure and dielectric properties of BaTiO3-based ceramics sintered. Journal of Materials Science and Technology, 26(5), 472-476.

Yamaguchi, R., Shoji Y., & Mizumoto, T. (2018). Low-loss Waveguide Optical Isolator with Taperede Mode Converter and Magneto-Optical Phase Shifter for TE Mode Input. Optical Express 26(16), pp. 21271-21278

Zendya, L., & Ermawati F. U. 2020. Pengaruh Variasi Tekanan Kompaksi Terhadap Mikrostruktur dan Densitas Keramik (Mg0,9Zn0,1)TiO3+2%wt Bi2O3 Hasil Sintesis Menggunakan Metode Pencampuran Larutan. Jurnal Inovasi Fisika Indonesia (IFI), 09, 145–51.

Zhang, M., Lingxia, L, Wangsuo, X. & Qingwei, L. (2012). Structure and Properties Analysis for MgTiO3 and (Mg0.97M0.03)TiO3 (M = Ni, Zn, Co and Mn) Microwave Dielectric Materials. Journal of Alloys and Compounds, 537, 76–79.

Zhang, J., Zhenxing, Y., Yu, L., & Longtu, L. (2018). MgTiO3/TiO2/MgTiO3: An Ultrahigh-Q and Temperature-Stable Microwave Dielectric Ceramic through Cofired Trilayer Architecture. Ceramics International, 44(17), 21000–3.

Downloads

Published

2021-03-07

How to Cite

Izza, L., & Ermawati, F. U. (2021). Characterization of (Mg1.0Zn0.0)TiO3+4 wt%Bi2O3 Ceramics for Application as Resonator in Dielectric Resonator Oscillator Circuit. JURNAL ILMU FISIKA | UNIVERSITAS ANDALAS, 13(2), 62–69. https://doi.org/10.25077/jif.13.2.62-69.2021

Issue

Section

Research Article

Citation Check