Estimation of Raindrop Size Distribution Parameters Using Lightning Data over West Sumatra

Authors

  • Faridah Salma Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang 2516, West Sumatra, Indonesia, Indonesia
  • Marzuki Marzuki Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang 2516, West Sumatra, Indonesia, Indonesia http://orcid.org/0000-0003-0266-812X
  • Hiroyuki Hashiguchi Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Japan, Japan https://orcid.org/0000-0001-8033-0955
  • Fadli Nauval Indonesian National Institute of Aeronautics and Space (LAPAN), Bandung, Indonesia, Indonesia

DOI:

https://doi.org/10.25077/jif.13.2.92-100.2021

Abstract

In situ observations of raindrop size distributions (DSDs) are still limited, especially in the tropics. Therefore, this study develops an alternative method to calculate DSD parameters by utilizing lightning data from the World-Wide Lightning Location Network (WWLLN) observation. DSD data was obtained from Parsivel's observations in the equatorial regions of Indonesia, i.e., Kototabang (100.32◦E, 0.20◦S, 865 m above mean sea level/ASL), Padang (100.46°E, 0.915°S, 200 m ASL), and Sicincin (100.30°E, 0.546°S, 134 m ASL). A gamma distribution parameterized the DSD. Three analysis domains were examined, with a grid of 0.1° x 0.1°, 0.5° x 0.5°, and 1° x 1°.  We examined the possibility to calculate the near-instantaneous DSD parameter, so three short time intervals, namely, one, five and ten minutes, were used. The results showed that the number of lightning strokes does not adequately correlate with DSD parameters. This is observed in all time intervals and analysis domains. Thus, the use of lightning data to calculate DSD parameters is not possible for short time interval of DSD (near instantaneous DSD). However, lightning data can estimate the average DSD parameters for an average time of more than one hour, as recommended by previous studies.

Downloads

Download data is not yet available.

Author Biography

Marzuki Marzuki, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang 2516, West Sumatra, Indonesia


 Department of Physics, Andalas University, west Sumatra, Indonesia
https://staff.unand.ac.id/marzuki/publications/ 

References

Albrecht, R.I., Goodman, S.J., Buechler, D.E., Blakeslee, R.J. & Christian, H.J. (2015). Where are the lightning hotspots on Earth, Bulletin of the American Meteorological Society, 97(11), 2051-2068.

Atlas, D., Ulbrich, C.W., Marks, F.D., Amitai, E. & Williams, C.R (1999). Systematic Variation of Drop Size and Radar-Rainfall Relationships, Journal of Geophysical Research, 104, 6155-6169.

Avila, M.C, Nora A, Cornelli E, Rodriguez-Castellon A & Jimenez-Lopez, (2010). Study of solid acid catalysis for the hydration of α-pinene. Journal of Molecular Catalysis A: Chemical, 322, 106-122.

Bourscheidt, V., Pinto, O., Naccarato, K. P., & Pinto, I. R. C. A. (2009). The influence of topography on the cloud-to-ground lightning density in South Brazil. Atmospheric Research, 91(2-4), 508–513. doi:10.1016/j.atmosres.2008.06.010.

Coppens, D. & Haddad, Z.S. (2000), Effect of Raindrop Size Distribution Variation on Microwave Brightness Temperature Calculation, Journal of Geophysical Research, 105 (19), 483-489.

Harikumar, R., Sampath, S., Kumar, V.S. (2009), An empirical model for the variation of rain drop size distribution with rain rate at a few locations in southern India. Advances in Space Research, 43, 837–844.

Harjupa, W., Shimomai, T., Hashiguchi, H., Fujiyoshi, Y., & Kawashima, M. (2021). Differences in Mechanisms of Orographic Rainfall over West Sumatra (Case Study: 10 April and 23 April 2004). Jurnal Ilmu Fisika, 13(1), 8-17. doi:https://doi.org/10.25077/jif.13.1.8-17.2021

Jameson, A.R. & Kostinski, A.B. (2001), What is Raindrop Size Distribution, Bulletin of American Meteorological Society, 82 (6), 1169-1177.

Kozu, T. & Nakamura, K. (1991), Rainfall Parameter Estimation from Dual-Radar Measurements Combining Reflectivity Profile and Path-integrated Attenuation, Journal of Atmospheric and Oceanic Technology, 8, 259-271.

Lapp, J., (2007), Analyzing Relationships Between Lightning and Rain in Order to Improve Estimation Accuracy of Rain, Theses, Clemson University, USA.

Loffler-Mang, M. & Joss, J. (2000), An Optical Disdrometer for Measuring Size and Velocity of Hydrometeors, Journal of Atmospheric and Oceanic Technology, 17, 130-139.

Marzuki, Kozu, T., Shimomai, T, Hashiguchi, H., Randeu, W.L., & Vonnisa, M., (2010), Raindrop Size Distribution of Convective Rain Over Equatorial Indonesia During the firs CPEA Campaign, Atmospheric Research, 96, 645-655.

Marzuki, M., Hashiguchi, H., Yamamoto, M.K., Mori, S., & Yamanaka, M.D., (2013a), Regional Variability of Raindrop Size Distribution over Indonesia, Annales Geophysical, 31, 1941-1948.

Marzuki, Hashiguchi, H., Yamamoto, M.K., Yamamoto. M., Mori. S., Yamanaka, M. D, Carbone, R. E, & Tuttle, J. D. (2013b) Cloud episode propagation over the Indonesian maritime continent from 10 years of infrared brightness temperature observations. Atmospheric Research, 120−121, 268–286.

https://doi.org/10.1016/j.atmosres.2012.09.004

Marzuki, Hashiguchi, H.,Shimomai, T., & Randeu, Walter L. (2016), Cumulative Distributions of Rainfall Rate Over Sumatra, Progress In Electromagnetics Research M, 49, 1-8, doi:10.2528/PIERM16043007.

Marzuki, M, Suryanti, K, Yusnaini, H, et al. (2021). Diurnal variation of precipitation from the perspectives of precipitation amount, intensity and duration over Sumatra from rain gauge observations. International Journal of Climatology. 1– 12. https://doi.org/10.1002/joc.7078

Owolawi, P. (2011), Raindrop Size Distribution Model for the prediction of Rain Attenuation in Durban, PIERS Online, 7 (6), 516-523.

Saufina, E., Marzuki, M., Vonnisa, M., Hashiguchi, H., & Harmadi, H., (2018), Seasonal and Diurnal Variations of Lightning Activity Over West Sumatra and Its Correlation with Precipitation Type, Makara Journal of Science, 22 (2), 95-104, DOI: 10.7454/mss.v22i2.8089.

Saylor, J.R., Ulbrich, C.W., Ballentine, J.W & Lapp J.L., (2005), The Correlation Between Lightning and DSD Parameters, IEEE Transactions on Geoscience and Remote Sensing, 43 (8), 1806 - 1815.

Tokay, A. & Short, D.A., (1996), Evidence from Tropical Raindrop Spectra of the Origin of Rain from Statifrom Versus Convective Clouds, Journal Applied Meteorology, 35, 355-371.

Uijlenhoet, R., (2010), Raindrop Size Distributions and Radar Reflectivity-Rain Rate Relationships for Radar Hydrology, Hydrology and Earth System Sciences, 5, 615-627.

Waldvogel, A., (1974), The N0 Jump of Raindrop Spectra, Journal of Atmospheric Society, 31, 1067-1078.

Yusnaini, Marzuki, Muharsyah, R., Vonnisa, M., & Tangang, F., (2021) Influence of topography on lightning density in Sumatra, Journal of Physics: Conference Series. 1876 012022.

Downloads

Published

2021-06-12

How to Cite

Salma, F., Marzuki, M., Hashiguchi, H., & Nauval, F. (2021). Estimation of Raindrop Size Distribution Parameters Using Lightning Data over West Sumatra. JURNAL ILMU FISIKA | UNIVERSITAS ANDALAS, 13(2), 92–100. https://doi.org/10.25077/jif.13.2.92-100.2021

Issue

Section

Research Article

Citation Check