Long-Term Change in Characteristics of Cloud Vertical Structures Over Sumatra from Radiosonde Observations

Lismalini Lismalini (Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang, Indonesia)
Marzuki Marzuki    (Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang, Indonesia) Orcid ID Google Scholar or Scopus ID
Mohammad Ali Shafii (Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang, Indonesia)

 ) Corresponding Author
Copyright (c) 2021 Lismalini Lismalini, Marzuki Marzuki, Mohammad Ali Shafii

Study on the vertical structure of cloud in Indonesia in terms of climate change is still very limited. We investigated the long-term change in characteristics of cloud vertical structures over Sumatra from three radiosonde observation stations in this work. The cloud base height (CBH), cloud top height (CT), and the number of cloud layers were retrieved using relative humidity (RH) profiles from radiosonde observation. The height of the cloud base is determined by taking the height of the layer with relative humidity (RH) value > 84% with at least a 3% jump in the RH from the ground level. Sumatra’s most frequently observed cloud layer is a one-layer cloud with an average occurrence rate of > 60%, which is slightly larger than the one-layer cloud globally. The percentage of appearance values at the Padang station, Pangkal Pinang, and Medan are 63.58%, 69.50% and 66.05%. The appearance of low-level clouds also dominates in Sumatra compared to other cloud types. CT and CBH increase with the number of years including all seasons. This is in line with the increase in temperature in Indonesia reported by previous researchers. On the other hand, the clouds’ thickness, especially for the cloud with one layer, varies from one location to another. The thickness of clouds decreases at Padang station and does not change at Pangkal Pinang and Medan stations.

  Click to Read the Full Text

Aldian, E. and Susanto, R.D. (2003). Identification of Three Dominant Rainfall Region Within Indonesia and Their Relationship to Sea Surface Temperature, International Journal of Climatology. 23, 12, 1435-1452, DOI: https://doi.org/10.1002/joc.950.

Borg, L. A., Holz, R. E. and Turner, D. D. (2011). Investigating Cloud Radar Sensitivity to Optically Thin Cirrus Using Collocated Raman Lidar Observations. Geophysical Research Letters. 38, L05807, DOI: https://doi.org/10.1029/2010GL046365.

Chernykh, I.V., Alduchov, O. A and Eskridge, R. E, (2001). Trends in Low and High Cloud Boundaries and Errors in Height Determination of Cloud Boundary, Bulletin of the American Meteorological Society. 82, 1941–1947, DOI: http://org.doi/10.1175/15200477 (2001) 082<1941

Chepfer H, Bony S, Winker D, Cesana G, Dufresne JL, Minnis P, Stubenrauch CJ, Zeng S, (2010). The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP), Journal of Geophysical Research, 115, D00H16, DOI: https://doi.org/10.1029/2009JD012251.

Dai, A. G., T. R. Karl, B. M. Sun, and K. E Trenberth, (2006). Recent trends in cloudiness over the United States: A tale of monitoring inadequacies. Bulletin of the American Meteorological Society, 87, 597– 60. DOI: https://doi.org/10.1175/BAMS-87-5.

Dong, X.Q., Xi, B. K. and Minnis, P. (2006). A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility. Part II: Cloud Fraction and Surface Radiative Forcing. Journal Climate. 19, 1765–1783, DOI: https://doi.org/10.1175/JCLI3710.1

Eastman, R. and Warren, S.G. (2013). A 39-yr Survey of Cloud Changes from Land Stations Worldwide 1971-2009: Long-Term Trends, Relation to Aerosols, and Expansion of the Tropical Belt. Journal of Climate. 26, 1286–1303. DOI: https://doi.org/10.1175/JCLI-D-12-0028

Gunawan, E, H (2016). Sky Explorer Handbook. https://kafeastronomi.com/cara membaca citra satelit.html/ [accessed 17 May 2020]. (in Bahasa)

King, M. D., S. Platnick, W. P. Menzel, S. A., et al., (2013). Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites, IEEE Transactions on Geoscience and Remote Sensing. 51, 3826–3852, DOI: https://doi.org/10.1109/TGRS.2012.2227333

Lazaros, O., Cho, N., and Lee, D. (2017). New Insights about Cloud Vertical Structure from CloudSat and CALIPSO observations, Journal of Geophysical Research: Atmospheres. Sep 16; 122 (17), 9280–9300, DOI: https://doi.org/10.1002/2017JD026629

Lazarus, S. M., Krueger, S. K., and Mace, G. G. (2000). A Cloud Climatology of the Southern Great Plains ARM CART, Journal Climate. 13, 1762–1775, DOI: https://doi.org/10.1175/1520.

Li, Z. Q., Lau, W. K., Ramanathan, V., et al., (2016) . Aerosol and Monsoon Climate Interactions over Asia”, Reviews of Geophysics. 5: 866–929, DOI: https://doi.org/10.1002/2015RG000500.

Lismalini and Marzuki, (2020a). Long-term Change in Characteristics of Cloud Vertical Structures in Padang from Radiosonde Observations, Journal of Physics: Conference Series. 1528, 012058, DOI: http://org.doi/10.1088/1742-6596/1528/1/012058

Lismalini, Marzuki, Shafii. M, A. and Yusnaini, H. (2020b). Relationship between Cloud Vertical Structures inferred from Radiosonde Humidity Profiles and Precipitation over Indonesia, Proc. The 3rd International Conference on Research and Learning of Physics ICRLP 2020.

Martucci, G., Milroy, C. and O’Dowd, C. D. (2010). Detection of Cloud-Base Height Using Jenoptik CHM15K and Vaisala CL31 Ceilometers. Journal of Atmospheric and Oceanic Technology. 27, 305–318 DOI: https://doi.org/10.1175/2009JTECHA1326.1.

Marzuki, Hashiguchi, H., Yamamoto, M. K., et al., (2013). Cloud Episode Propagation Over the Indonesian Maritime Continent from 10 years of Infrared Brightness Temperature Observations. Atmospheric Research. 120-121, 268-286, DOI: https://doi.org/10.1016/j.atmosres.2012.09.004.

Marzuki, Vonnisa, M., Rahayu, A. and Hashiguchi, H. (2017). Cloud Statistics over the Indonesian Maritime Continent during the First and the Second CPEA Campaigns, Atmospheric Research. 189, 99–110, DOI: https://doi.org/10.1016/j.atmosres.2017.01.019.

Marzuki, H. Hashiguchi, M. Vonnisa, and Harmadi, (2018a). Seasonal and diurnal variations of vertical profile of precipitation over Indonesian maritime continent. Engineering and Mathematical Topics in Rainfall, T. Hromadka, and P. Rao, Eds., InTech Open, Croatia. DOI: https://doi.org/10.5772/intechopen.74044/

Marzuki, Hashiguchi, H., Vonnisa, M. et al. (2018b). Determination of Intraseasonal Variation of Precipitation Microphysics in the Southern Indian Ocean from Joss–Waldvogel Disdrometer Observation during the CINDY Field Campaign. Advances in Atmospheric Sciences. 35, 1415–1427. DOI: https://doi.org/10.1007/s00376-018-8026-5

Marzuki, Krisna, K., Yusnaini. H., et al, (2021). Diurnal variation of precipitation from the perspectives of precipitation amount, intensity and duration over Sumatra from rain gauge observations, submitted International Journal of Climatology.

Minnis, P., and E. F. Harrison (1998). Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. Part I: Analysis method. Journal of Applied Meteorology and Climatology. 23, 993–1011, DOI: https://doi.org/10.1175/15200450

Naud, C. M., Muller, J.-P., and Clothiaux, E. E, (2003). Comparison be-tween active sensor and radiosonde cloud boundaries over the ARM Southern Great Plains site, Journal of Geophysical Research: Atmospheres.,108,D10203, https://doi.org/10.1029/2002JD002887

Reddy, N.N., Ratnam, M.V.,Basha, G., Ravikiran, V. (2018). Cloud Vertical Structure over A Tropical Station Obtained Using Long-term High-resolution Radiosonde Measurements. Atmospheric Chemistry and Physics. 18, 11709–11727. DOI: https://doi.org/10.5194/acp-18-11709-2018,2018

Rosenfeld, D. and Ulbrich, C. W. (2003). Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A collection of Essays in Honor of David Atlas, Meteorological Monographs. 52, 237–258 DOI: https://doi.org/10.1175/00659401.

Sharma, S., Vaishnav, R., Shukla, M. V., et al., (2016). Evaluation of Cloud Base Height Measurements from Ceilometer CL31 and MODIS Satellite Over Ahmedabad, India, Atmospheric Measurement Techniques. 9. 711– 719. DOI: https://doi.org/10.5194/amt-9-711-2016

Simanungkalit, C.W. (2018), Meteorological Observations Using Radiosonde, E-buletin Stasiun Meteorologi Kualanamu. 3-8 (in Bahasa).

Stephens, G. L., Li, J., Wild, M., et al., (2012). An Update on Earth’s Energy Balance in Light of the Latest Global Observations, Nature Geoscience. 5, 691–696, DOI: https://doi.org/10.1038/ngeo1580.

Sugimoto, N., Matsui, I., Shimizu, A., Pinandio, M. and Sugondo, S. (2000). Climatological Characteristics of Cloud Distribution and Planetary Boundary Layer Structure in Jakarta, Indonesia revealed by lidar observation. Geophysical Research Letters. 27 (18), 2909–2912, DOI: https://doi.org/10.1029/2000GL011544.

Susandi, A (2004). The impact of international greenhouse gas emissions reduction on Indonesia. Report on Earth System Science, Max Planck Institute for Meteorology, Germany.

Wang, J. H. and Rossow, W. B. (1995) Determination of Cloud Vertical Structure from Upper air Observations, Journal of Applied Meteorology. 34, 2243–2258 DOI: https://doi.org/10.1175/1520-0450(1995034<2243

Wang, J. H. and Rossow, W. B. and Zhang, Y.H., (2000). Cloud Vertical Structure and Its Variations from a 20-Yr Global Rawinsonde Dataset, Journal of Climate. 13, 3041-3055, DOI: https://doi.org/10.1175/1520-0442(2000)013<3041:CVSAIV>2.0.CO;2

Warren, S.G., Hahn, C.J., London, J. et al., (1988). Global Distribution of Total Cloud Cover and Cloud Type Amounts over the Ocean. NCAR Technical NoteTN-317+STR, Boulder, Colorado, 42pp.+170 maps (also DOE/ER-0406), DOI: https://doi.org/10.2172/25415329

Zhang, J. Q., Chen, H. B., Li, Z. Q. et al., (2010). Analysis of Cloud Layer Structure in Shouxian, China Using RS92 Radiosonde Aided by 95 GHz Cloud Radar. Journal Geophysics Research. 115 ,D00K30, DOI: https://doi.org/10.1029/2010JD01.

Zhou, C., Zelinka, M.D. and Klein., S. A. (2016). Impact of decadal cloud variations on the Earth’s energy budget Nature Geoscience. 9, 871–874. DOI: https://doi.org/10.1038/NGEO2828.

StatisticsArticle Metrics

This article has been read : 97 times
PDF file viewed/downloaded : 32 times