Application of Complementary Split Ring Resonator for Hyperthermia

Rahmawati Yusri    (Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang, Indonesia) Orcid ID
Muldarisnur Muldarisnur (Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang, Indonesia)

 ) Corresponding Author
Copyright (c) 2021 Rahmawati Yusri, Muldarisnur Muldarisnur

One of the most promising research for cancer therapy with less side effects is hyperthermia treatment using metamaterial. This treatment may stand independently or adjunct to other cancer treatments such as chemotherapy, radiotherapy, and others. Metamaterial may control the heating process needed and also the depth of metamaterial itself from the skin surface. In this simulation, complementary split-ring resonator (cSRR) metamaterial with gaps from 0.5 to 3.5 mm can be used for the hyperthermia treatment. In the simulation of the cSRR metamaterial as hyperthermia therapy for cancer cells, the heat generated from each cSRR model was not significantly different. All cSRR models can reach hyperthermal temperatures under 5 minutes. The highest temperature achievement after 60 minutes can be seen in the use of single gap cSRR (58.9 ℃), dual gaps cSRR (58.1 oC), triple gaps cSRR (57.5 ℃), and quad gaps cSRR (57.2 ℃). The cSRR metamaterial structure can be used for hyperthermia therapy by adjusting the treatment duration treatment on cancer cells.

  Click to Read the Full Text

Asin L, Ibarra, M, R., Tres, A,., (2012). Controlled Cell Death by Magnetic Hyperthermia: Effects of Exposure Time, Field Amplitude, and Nanoparticle Concentration. Springer. 29, 5, 1319-1320.

Cinausero, M., Aprile, G., Ermacora, P,, (2017). New Frontiers in the Pathobiology and Treatment of Cancer Regimen-Related Mucosal Injury.Frontiers in Pharmacology. 11, 6, 2.

David, V, Dario, B. R., Jan, V., (2016), Metamaterial Antenna Arrays for Improved Uniformity of Microwave Hyperthermia Treatments. Progress in Electromagnetic Research, 156, 1-12

Di, J., Yongmao, H., Tao, H., (2015). Implementation of A Compact Microstrip Power Divider Using Novel Split Ring Resonator., Elsevier, 126, 1782-1786.

DS, Kapp. (1996). Efficacy of adjuvant hyperthermia in the treatment of superficial recurrent breast cancer: Confirmation and future directions. Int J Radiat Oncol Biol Phys. 35, 731-744.

Fitriatuzzakiyyah, N., Sinuraya, R, K., Puspitasari, I, M.,. (2017). Terapi Kanker dengan Radiasi: Konsep Dasar Radioterapi dan Perkembangannya di Indonesia. Jurnal Farmasi Klinik Indonesia, 6, 4, 1.

Francisco, A., Adolfo V., Miguel, D-S., (2010), Open Complementary Split Ring Resonators: Physics, Modelling, and Analysis. Microwave and Optical Technology Letters, 52, 7.

Hanahan, D., Weinberg, R, A. (2000). The Hallmarks of Cancer, Elsevier, 100, 1.

Ishihara, Y. and Ohwad, H.(2011). Non-Invasive Temperature Measurement by Using Phase Changes in Electromagnetic Waves in a Cavity Resonator, International Journal of Hyperthermia, 27, 726-736.

Junaidi, I.,(2007). Kanker— Pengenalan, Pencegahan, dan Pengobatannya.. Jakarta : PT. Bhuana Ilmu Populer.

Lele, P.P.(1980). Induction of Deep, Local Hyperthermia by Ultrasound and Electromagnetic Field, Biophys. 17, 205-217.

Lemine, O. M.(2019). Magnetic Hyperthermia Therapy Using Hybrid Magnetic Nanostructures. Hybrid Nanostructures for Cancer Theranostics, Elsevier. 125-138.

Maria, C. V., Manuel, J.F., Ricardo, M. (2011). Metamaterial Applicator for Microwave Hyperthermia, IEEE

Mcquade, R, M., Bornstein, J, C., Nurgali, K.,. (2014). Anti-Colorectal Cancer Chemotheraphy-Induced Diarrhoea: Current Treatments and Side Effects, International Journal of Clinical Medicine. 5, 393-406.

Nielsen OS, Horsman M, Overgaard J. (2001). A Future for Hyperthermia in Cancer Treatment. Eur J Cancer, 37, 1587-1589.

Selvaraju, R, Jamaluddin, M, H., Kamarudin, M, R.,, (2018). Complementary Split Ring Resonator for Isolation Enhancement in 5g Communication Antenna Array. Semantic Scholar, 83, 217-228

Sheetal, J., Pramod, K.S., Rishabha, M., (2016). Hyperthermia: Role and Risk Factor for Cancer Treatment. Elsevier, 10, 161-167.

Short, J.G., Turner, P.F.(1980). Physical Hyperthermia and Cancer Therapy. Proc. IEEE, 68, 133-141.

Song, CW., Lokshina, A., Rhee JG., (1984). Implication of Blood Flow in Hyperthermic Treatment of Tumors, IEEE Trans Biomedic Eng, 31, 9-16.

Szigeti, G.P., Hegyi, G. and Szasz, O.(2013). Hyperthermia versus Oncothermia: Cellular Effects in Cancer Therapy. Conference of the International Clinical Hyperthermia Society : Hindawi Publishing Corporation.

Raphael, S. D., Ramasamy, P., Singaravelu, R., (2017). Design and Analysis of Open Complementary Split Ring Resonators Loaded Monopole Antenna for Multiband Operation, Progress In Electromagnetic Research C, 78, 173-182.

Roti, J, L, R. (2008). Cellular Responses to Hyperthermia (40-46℃): Cell Killing and Molecular Events. International Journal of Hyperthermia, 24, 1, 1-2.

Wust, P., HIldebrandt B., Sreenivasa Y, et. al. (2002), Hyperthermia in Combined Treatment Of Cancer, Lancet Oncol, 3, 487-497.

StatisticsArticle Metrics

This article has been read : 62 times
PDF file viewed/downloaded : 17 times