Differences in Mechanisms of Orographic Rainfall over West Sumatra (Case Study: 10 April and 23 April 2004)

Wendi Harjupa    (The National Institute of Aeronautics and space of Indonesia, Indonesia.) Orcid ID
Toyoshi Shimomai (Remote Sensing Laboratory, Shimane University, Japan)
Hiroyuki Hashiguchi (Research Institute for Sustainable Humanosphere, Kyoto University, Japan) Orcid ID
Yasushi Fujiyoshi (Institute of Low Temperature Science, Hokkaido University, Japan)
Masayuki Kawashima (Institute of Low Temperature Science, Hokkaido University, Japan)

 ) Corresponding Author
Copyright (c) 2021 Wendi Harjupa, Toyoshi Shimomai, Hiroyuki Hashiguchi, Yasushi Fujiyoshi, Masayuki Kawashima

Two different mechanisms of orographic rainfall enhancement  in West Sumatra were investigated utilizing observed data during the Coupling Processes in the Equatorial Atmosphere (CPEA)-I campaign. The variation of the atmospheric conditions during the campaign was shown by rainfall, surface wind, humidity, and stability index. An X-band Doppler radar captured the atmospheric conditions related to the enhancement of orographic rainfall mechanisms. The dry and less stable atmospheric conditions resulted in the convective type of rainfall. In contrast, the humid and stable atmospheric conditions brought the large-scale rainfall in the mountainous region where the events took place coincided with the inactive and active MJO phases.


  Click to Read the Full Text

Cressman, G.P., (1959). An operational objective analysis scheme. Mon. Wea. Rev., 87, 367-374, http://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

Durran, D., & Klemp, J. B. (1982). On the effects of moisture on the Brunt-Väisälä frequency. Journal Of The Atmospheric Sciences, 39, 2152-2158, http://10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2

Fukao, S., (2006). Coupling processes in the equatorial atmosphere (CPEA): A project overview. J. Meteor. Soc. Japan, 84A, pp. 1-18, https://doi.org/10.2151/jmsj.84A.1.

Fukao, S., H. Hashiguchi, M. Yamamoto, T. Tsuda, T. Nakamura, M.K. Yamamoto, T. Sato, M. Hagio, and Y. Yabugaki, (2003). Equatorial atmosphere radar (EAR): System description and first results. Radio Sci., 38(3), 1053, http://doi.org/10.1029/2002RS002767.

Harjupa, W., (2009). The Development of rain and cloud in the mountainous region of West Sumatra. Proceedings of SNSAA. ISBN: 978-979-1458-78. (in Bahasa)

Houze, R. A., and R. Rotunno, (2007). Lessons on orographic precipitation from the Mesoscale Alpine Program. Q. J. R. Meteorol. Soc., 133, 811-830, https://doi.org/10.1002/qj.67.

Kamimera, H., S. Mori, M. D. Yamanaka, F. Syamsudin, (2012). Modulation of Diurnal rainfall Cycle by the Madden-Julian Oscillation Based on One-Year Continuous Observations with a Meteorological Radar in West Sumatra, SOLA, 8, 111-114, https://doi.org/10.2151/sola.2012-028.

Kawashima, M., Y. Fujiyoshi, M. Ohi, T. Honda, T. Kozu, T. Shimomai, and H. Hashiguchi, (2006). Overview of Doppler radar observations of precipitating cloud systems in Sumatra Island. J. Meteor. Soc. Japan, 84A, 33-56, https://doi.org/10.2151/jmsj.84A.33.

Lu, J. H., T. Li, and L. Wang, (2019). Precipitation diurnal cycle over the Maritime Continent modulated by the MJO. Climate Dyn., 53, 6489–6501. https://doi.org/10.1007/s00382-019-04941-8.

Mori, S., J.-I. Hamada, N. Sakurai, H. Fudeyasu, M. Kawashima, H. Hashiguchi, F. Syamsudin, A. A. Arbain, R. Sulistyowati, J. Matsumoto, and M. D Yamanaka, (2011). Convective systems developed along the coastline of Sumatra Island, Indonesia, observed with an X-band Doppler radar during the HARIMAU2006 campaign. J. Meteor. Soc., Japan, 89 A, 61-81, https://doi.org/10.2151/jmsj.2011-A04.

Nitta, T., T. Mizuno, and K. Takahashi, (1992). Multiscale convective systems during the initial phase of the 1986/87 El Nino. J. Meteorol. Soc., Japan, 70, 447 – 466, https://doi.org/10.2151/jmsj1965.70.1B_447.

Peatman, S. C., Mattthews A. J., Stevens, D. P., (2014). Propagation of the Madden-Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Q. J.R. Meteorol. Soc., 140: 814-825, https://doi.org/10.1002/qj.2161.

Roe, G. H., (2005). Orographic Precipitation. Annu. Rev. Earth Planet. Sci, 33, 645–671, https://doi.org/10.1007/978-90-481-2642-2_380.

Shibagaki, Y., T. Kozu, T. Shimomai, S. Mori, F. Murata, Y. Fujiyoshi, H. Hashiguchi, and S. Fukao, (2006). Evolution of a super cloud cluster and the associated wind fields observed over the Indonesian Maritime Continent during the first CPEA campaign. J. Meteorol. Soc. Jpn., 84A, 19 – 31, https://doi.org/10.2151/jmsj.84A.19.

Smith, R. B., (1979). The influence of mountains on the atmosphere. Adv. Geophys., 21, 87–230, https://doi.org/10.1016/S0065-2687(08)60262-9.

Smith, R. B., (2006). Progress on the theory of orographic precipitation, Tectonics, Climate, and Landscape Evolution: GSA Special Paper 398. Boulder: Geol. Soc. Am. Bull., 1–16, https://doi.org/10.1130/2006.2398(01).

Stewart, M., (2013). Orographic Effect. Retrieved from https://www.flickr.com/photos/megstewart/8644087724.

Wheeler, M. C., and H. H. Hendon, (2004). An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932, http://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2

Wu, P., S. Mori, J.-I. Hamada, M. D. Yamanaka, J. Matsumoto, and F. Kimura, (2008). Diurnal Variation of Rainfall and precipitable water over Siberut Island off wester coast of Sumatra Island. SOLA., 4, 125-128, https://doi.org/10.2151/sola.2008-032

StatisticsArticle Metrics

This article has been read : 115 times
PDF file viewed/downloaded : 26 times