
Jurnal Ilmu Fisika  
Vol. 16, No. 1, March 2024, pp. 22–33  

ISSN: 1979-4657 (Print); 2614-7386 (Online) 

https://doi.org/10.25077/jif.16.1.22-33.2024 

 Attribution-NonCommercial 4.0 International   http://jif.fmipa.unand.ac.id/ 22 
 

O
p

en
 A

ccess 

Jurnal Ilmu 
Fisika 

Efficiency at Maximum Power of Endoreversible Quantum Otto Engine 

with Partial Thermalization in 3D Harmonic Potential 

Zahara Zettira1, Trengginas E. P. Sutantyo1*, Zulfi Abdullah1 

1Theoretical Physics Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences,  
Universitas Andalas, Limau Manis, Padang, 25163, Indonesia 

Article Info  ABSTRACT   

Article History: 

Received August 3, 2023 

Revised September 18, 2023 

Accepted September 19, 2023 

Published online September 22, 2023 

 

 

We study the partial thermalization to the effect of efficiency at maximum power 
(EMP) of a quantum Otto engine using Bose-Einstein Condensation in 3D 
harmonic potential. Partial thermalization occurs at a finite-time isochoric 
process, preventing the medium from achieving equilibrium with reservoirs, 
leaving it in a state of residual coherence. Under these circumstances, the 
performance of the engine can be seen from its power and EMP. The 3D 
harmonic potential is used to generate an excitation of energy during the 
expansion and compression. The total energy is defined by the total work done 
in a cycle. Using Fourier’s law in conduction, we found that power explicitly 
depends on the duration of heating and cooling stroke time and efficiency of the 
engine; that is the higher stroke time and efficiency, the less power output. In 
order to find EMP, we maximize power with respect to compression ratio κ, and 
we found that EMP also depends on the isochoric heating and cooling process. 
By varying the stroke time of the isochoric process, EMP slightly decreases with 
increasing isochoric time due to entropy production. However, adjusting cooling 
stroke time more extended than heating stroke time could significantly improve 
the EMP of Otto Engine. 
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1. INTRODUCTION  

The existence of quantum theory has a significant impact on other classical theories, including 

thermodynamics. Applying quantum theory in thermodynamics is also known as quantum 
thermodynamics (Deffner & Campbell, 2019). One of the most fascinating studies in this field is the 

Quantum Heat Engine (QHE), spearheaded by Scovil and Dubois in 1959 (Scovil & Schulz-Dubois, 

1959). QHE is a device that uses quantum material as a working substance in order to convert heat into 
practical work. Some types of QHE operate similarly to classical engines (Abah et al., 2012; Deffner, 

2018; Smith et al., 2020), but some are very different (Kim et al., 2022; Myers, Abah, et al., 2022; 
Myers, Peña, et al., 2022). The main motivation is to create a more practical and efficient engine model 

as close to the realistic engine. 

The highest efficiency is bounded by Carnot efficiency, but this engine operates slowly, which 

causes zero power output. In an ideal Carnot cycle, all the processes are reversible, causing no entropy 
production to occur during the cycle. Reversible processes are impossible in the real world because 

friction will always occur during the cycle, which makes the cycle irreversible and reduces efficiency. 

Curzon-Ahlborn (1975) resolved this problem by applying endoreversible thermodynamics to the 
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classical Carnot engine; as a result, the power output is non-zero, but the endoreversible efficiency is 

less than the quasistatic efficiency. However, one found that (Scully et al., 2003) replacing classical 

material with quantum material as a working substance could enhance the efficiency of the engine 
(Fahriza et al., 2022; Fahriza & Sutantyo, 2022). By using quantum material, there has been a great deal 

of research on this endoreversible approach using various thermodynamics cycles, starting from Carnot 

cycle (Altintas, 2019; Dann & Kosloff, 2020; Niedenzu et al., 2018; Sutantyo et al., 2015), Lenoir cycle 
(Fahriza et al., 2022; Shen et al., 2017; Wang et al., 2021), Otto cycle (Boubakour et al., 2022; B. 

Çakmak & Müstecaplloǧlu, 2019; Fei et al., 2022; Jiao et al., 2021; Myers, Peña, et al., 2022; Peña et 
al., 2023; Zettira et al., 2023), and Stirling cycle (Kaushik & Kumar, 2000; Yin et al., 2020). 

Nevertheless, instead of implementing other cycles, the Otto cycle is receiving significant attention since 

it is frequently used in practical engines. This widespread adoption is primarily due to the Otto cycle’s 
exceptional efficiency, versatility, and compatibility with various engine types, making it a preferred 

choice for a wide range of vehicles. Moreover, advancements in engineering and technology continue 

to enhance the performance and efficiency of Otto engine, which is this study's primary motivation. 

The main difference between an endoreversible Otto cycle and a quasistatic Otto cycle is in the 

thermalization process. In the quasistatic cycle, thermal contact between medium and reservoirs is 
extended long enough, making thermal equilibrium achievable. Meanwhile, in the endoreversible cycle, 

the thermal contact is speeded up so that the medium never reaches thermal equilibrium with the 

reservoir. In the previous study (Deffner, 2018; Kosloff & Rezek, 2017; Myers, Peña, et al., 2022; Smith 
et al., 2020; Zettira et al., 2023), it has been found that the efficiency of the endoreversible Otto engine 

using classical materials is exactly Curzon-Ahlborn efficiency and independent of external potential 

acting on it. However, efficiency using quantum materials such as Bose-Einstein Condensate (BEC) is 
significantly higher than Curzon-Ahlborn efficiency and highly depends on applied external potential. 

Moreover, the engine efficiency with BEC also depends on thermal contact between the hot and cold 
reservoirs (Camati et al., 2019; Chand et al., 2021; Zettira et al., 2023). Nevertheless, in that study, the 

effect of thermalization was only carried out on theoretical linear potentials. Here, we utilize a harmonic 

potential, which is commonly used in the experimental realization of BEC, due to the critical 

temperature of the BEC phase is achievable, i.e., nano Kelvin (𝑛𝐾) orde (Aveline et al., 2020). Thus, 

the harmonic potential proves to be more applicable than the linear potential.  

In this study, we examine the quantum Otto engine efficiency at maximum power with BEC as 

a working medium trapped in the 3D harmonic potential. The cycle is treated endoreversibly, in which 

compression and expansion stroke are adiabatic quasistatic, while heating and cooling stroke is not 
quasistatic, meaning the working substance never reaches equilibrium with the reservoir. The power 

produced in a cycle is visualized as a function of efficiency. In order to find the efficiency at maximum 

power (EMP), we maximize the power numerically with respect to compression ratio 𝜅. We found that 

EMP is highly dependent on heating (𝜏ℎ) and cooling (𝜏𝑙) stroke time and varying both will significantly 
affect the EMP. The imbalance time stroke of the cycle will intrigue partial thermalization, which is by 

setting an appropriate value of 𝜏ℎ and 𝜏𝑙, could improve EMP more significantly, and this is the main 
focus of this study. By using Otto cycle that only consists of adiabatic and isochoric stroke, we can 
easily generate the situation of partial thermalization by focusing the investigation on the isochoric only 

since the adiabatic is treated in a quasistatic manner. Furthermore, by deriving the formula in a 3D 

harmonic potential state, the physical properties' clarity can be implemented in future studies rather than 
the lower dimension state, especially for experiments or even on a prototype quantum engine. 

2. FORMALISM OF ENDOREVERSIBLE QUANTUM OTTO ENGINE 

2.1 Thermodynamics Property of BEC in 3D Harmonic Potential 

In this study, we use 𝑁-number of bosons in the regime Bose-Einstein Condensate (BEC) as the 
working substance of the quantum Otto engine. BEC trapped in 3-dimensional harmonic potential. 

Using the Schrödinger equation, we can get the energy eigenvalue of the system. This energy eigenvalue 
can be linked to other thermodynamic quantities such as internal energy and entropy. Internal energy 
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and entropy are essential parameters to find the amount of work, power, and efficiency of an engine. As 

referred to (Griffiths & Schroeter, 2018; Pathria & Beale, 2011; Zettili & Zahed, 2003), the harmonic 

potential has a form. 

  2 2 2 21
( )

2
V m x y z  r . (1) 

The change of energy through excitation is the work produced in the cycle. However, using the 

Schrödinger equation to find the energy eigenvalue in a system containing the 𝑁-number of particles is 

challenging. Despite this, boson in a condensate state experiences the same quantum state, making the 

ground state energy must be degenerate. But in this case, due to 𝑘𝐵𝑇 ≫ 𝜀𝑖+1 − 𝜀𝑖, so that the degeneracy 

is replaced with a density of state 𝐷(𝜀),  which in the 3D harmonic potential based on Eq. (1) has the 
form (Pathria & Beale, 2011), 

  
 

2

3
D





 . (2) 

In order to find the thermodynamic properties of BEC under 3D harmonic potential, we need to 

apply the density of state to the grand canonical potential (Ω) in Bose-Einstein statistic (Pitaevskii & 
Lev, 2016). The formulation of grand canonical potential for the bosonic system is formulated as 

    
0

ln 1
B

k T D ze d 
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   . (3) 

We have 𝑧 = 𝑒
𝜇

𝑘𝐵𝑇 as fugacity and 𝛽 = 1/𝑘𝐵𝑇 as inverse thermal energy. By integrating Eq. (3), we get 
the formulation of grand canonical potential, 
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with 𝑔4(𝑧) is the Bose function defined as below 
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where Γ(𝑝) is the gamma function. For discrete quantity, the Bose function can also be expanded in 
series form as follows (Pathria and Beale, 2011), 
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As mentioned before, other thermodynamic properties can be derived directly from equation (4) using 

the relation Ω = 𝑈 − 𝑇𝑆 − 𝜇𝑁 (Pathria and Beale, 2011). We obtained the entropy of BEC under 3D 

harmonic potential by deriving eq. (4) with respect to the 𝑇, written as 

    
3

, 4 4B

B

k T
S T k 



 
  

 
. (7) 

Since BEC occurs when fugacity, 𝑧 reaches its maximum value of 1, the Bose function when 𝑧 = 1 can 

be replaced by zeta function, 𝜁(𝑝). The phase transition to BEC occurs at a specific temperature, namely 

the critical temperature. The critical temperature of BEC depends on the number of particles, the type 
of trapping potential and the mass of bosons (Myers, Peña, et al., 2022; Pitaevskii, Lev, 2016; Reppy et 

al., 2000). By deriving eq. (4) with respect to 𝜇, we get the critical temperature of BEC under 3D 
harmonic potential,  
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When the system reaches the critical temperature, all bosons do not immediately occupy the ground 
state but gradually occupy it as the temperature decreases. The fraction of bosons that remain in 

unoccupied state can be defined by eq. (8) (Myers, Peña, et al., 2022) 
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Another essential thermodynamics quantity to be determined is the internal energy. By substituting Eq. 

(4), (7), and (9) to the relation Ω = 𝑈 − 𝑇𝑆 − 𝜇𝑁, we get the internal energy of BEC in 3D harmonic 

potential as below, 

    
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All of this quantity will be applied to the Otto cycle in order to find the power and efficiency of the Otto 
engine; we will discuss this in the following subsection. 

2.2 Endoreversible Quantum Otto Engine 

The Otto cycle consists of four strokes: isochoric heating (1-4), isentropic expansion (3-4), 

isochoric cooling (3-2), and isentropic compression (2-1). In the classical Otto engine, expansion and 
compression are carried out by moving the piston. Unlike in the quantum Otto engine, expansion and 

compression are done by varying the external field (Kosloff & Rezek, 2017), which is the inverse of the 

volume. During the isochoric stroke, the field is held constant, and the system is enabled to contact 
reservoirs. Meanwhile, in isentropic stroke the field is varied, but the system is isolated from the 

reservoirs. The process in each cycle is represented in Figure 1. The transition phase to BEC occurs at 

a specific critical temperature, which in the previous study (Aveline et al., 2020; Myers, Peña, et al., 
2022; Zettira et al., 2023) is about 42 nK. Because of this, the temperature of the hot and cold reservoirs 

is assumed to be around this value in all simulations. 

 

Figure 1. Endoreversible Otto cycle 
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The fundamental difference between quasistatic and endoreversible cycles is in the isochoric 

stroke. In an endoreversible cycle, the working substance never reaches equilibrium with reservoirs due 

to finite time. To link the temperature of the working substance and reservoir, we used Fourier’s law for 
conduction (Deffner, 2018; Myers, Peña, et al., 2022). The amount of work and heat during each process 

are discussed below. 

Isentropic expansion  

During isentropic expansion, the working medium is isolated from the reservoir, and the external 

field is varied from 𝜔ℎ to 𝜔𝑙. The heat exchange during this process is zero because the working medium 
is isolated from reservoirs. Entropy also remains constant during the isentropic process, that is 

𝑆(𝜔𝑙 , 𝑇3) = 𝑆(𝜔ℎ, 𝑇4) and 𝑆(𝜔𝑙 , 𝑇2) = 𝑆(𝜔ℎ, 𝑇1). By applying this relation to the eq. (7), we get the 

correlation of 𝜔 and 𝑇 during the isentropic process. 

 2 1 1

l

h

T T T





    and  4 3 3

l
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T T T





  , (11) 

where 𝜅 is the compression ratio. Additionally, the amount of work during this process is  

𝑊𝑒𝑥𝑝 = 𝑈(𝜔𝑙 , 𝑇3) − 𝑈(𝜔ℎ, 𝑇4). Using the relation of 𝜔 and 𝑇 from eq. (11), we get the formulation of 

work during isentropic expansion,  
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Isochoric heating 

In isochoric heating, medium contact with the hot reservoir while the external field is kept 

constant at 𝜔ℎ, so the work during the heating process is zero. From the first law of thermodynamic, the 

amount of heat transferred to the medium is 𝑄𝑖𝑛 = 𝑈(𝜔ℎ, 𝑇4) − 𝑈(𝜔ℎ, 𝑇1). As mentioned above, the 

temperature at the end of heating process is not equal to the hot reservoir (𝑇ℎ), because the thermal time 
is finite, the change of temperature during the heating process can be described as (Deffner, 2018), 

  h h

dT
T T

dt
   , (13) 

with 𝛼ℎ is a constant that determines the heat capacity and thermal conductivity of the BEC in heating 

process. Using the boundary condition at the start and the end of a heating process, we get 𝑇(0) = 𝑇1 

and 𝑇(𝜏ℎ) = 𝑇4, where 𝜏ℎ is the heating stroke time. Solving eq. (11) and apply those boundary 

conditions, we get the temperature difference during the heating process,  

  4 1
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h h
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 
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Using Eq. (10), (11), and (14), we find the general formulation of heat transferred to the medium during 

the heating process. 
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,  
 (15) 

Isentropic compression 

The medium is isolated again from the reservoir during isentropic compression,  

while the external field is varied from 𝜔𝑙 to 𝜔ℎ. The amount of work is defined by the relation,  
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𝑊𝑐𝑜𝑚𝑝 = 𝑈(𝜔𝑙 , 𝑇2) − 𝑈(𝜔𝑙 , 𝑇3). Similar to isentropic expansion, by using eq. (11), we get the 

formulation of work during isentropic compression, 
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Isochoric cooling 

Medium contact with cold reservoir while the external field is kept constant at 𝜔𝑙 during 

isochoric cooling. The heat released to the cold reservoir causes the temperature of medium drops. The 
change of temperature during isochoric cooling can be determined by Fourier’s law of conduction, 

  l l

dT
T T

dt
   , (17) 

where 𝛼𝑙 is a constant that determines the heat capacity and thermal conductivity of the BEC in the 
cooling process. According to the boundary condition at the initial and the final cooling process, we get 

𝑇(0) = 𝑇3 and 𝑇(𝜏𝑙) = 𝑇2. Where 𝜏𝑙 is the cooling stroke time. Solving eq. (11) and apply those 
boundary conditions, we get the temperature difference during the cooling process,  

  2 1 3 1
l lT T T T e

 
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With the same idea as isochoric heating, substitute Eq. (10), (11), and (18) to the amount of heat injected 

into the cold reservoir, 𝑄𝑜𝑢𝑡 = 𝑈(𝜔𝑙 , 𝑇2) − 𝑈(𝜔𝑙 , 𝑇3), we get, 
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 (19) 

2.3 Power and Efficiency 

Power, 𝑃 is the total work produced during a cycle divided by the total time during the cycle. The 

total time in a cycle is the summation of time in the isochoric and isentropic processes. As referred to 
references (Deffner, 2018; Kosloff & Rezek, 2017), the power produced in a cycle is formulated below, 
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Where 𝛾 is the time multiplication constant. Using Equation (12) and (16), we get the power during one 
cycle as below, 
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Efficiency is the fraction of work produced in a cycle to the amount of heat transferred to a working 
substance. The total work produced in a cycle is the summation of work in expansion and compression. 

The general formulation of efficiency is defined as (Deffner, 2018; Kosloff & Rezek, 2017),  
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The higher the efficiency, the more heat can be converted into work. Substitute Eq. (12), (15), and (16) 

to Eq. (22), we get the formulation of efficiency Otto engine, 

 1   . (23) 

where 𝜅 =
𝜔𝑙

𝜔ℎ
 is a compression ratio. We see that efficiency only depends on the compression ratio and 

not on other physical properties of medium. 

3. RESULTS AND DISCUSSION  

Based on Equation (16), besides the dependency of the temperature of the reservoir, power also 

depends on the compression ratio and the time during the isochoric process. Due to the dominator in Eq. 
(16), the longer the cycle, the less power is produced. Whereas the efficiency does not depend on 

isochoric stroke time, so the efficiency of a quasistatic cycle and an endoreversible cycle will give the 
same formulation. (Zettira et al., 2023). However, high efficiency does not always produce high power; 

the highest efficiency is bounded by the Carnot limit, that is when 𝜂 = 1 −
𝑇𝑙

𝑇ℎ
. If we substitute this 

relation to Eq. (21), we get power vanish at Carnot limit, making it impossible to achieve that efficiency 

in the practical world. This is the crucial reason to find the optimum efficiency, namely the Efficiency 
at Maximum Power (EMP), which is the efficiency when power reaches its maximum value. EMP is 

obtained by deriving Eq. (21) with respect to 𝜅 written as, 

 0

max

P



 
 
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. (24) 

In this derivation, we kept 𝜏𝑙 and 𝜏ℎ constant. The aim is to see how EMP changes under the variation 

of these two parameters. Then 𝜅𝑚𝑎𝑥  is substituted back to Eq. (23) to get the efficiency at maximum 

compression ratio or EMP. The visualization of EMP is displayed in Figure 2.  

 

Figure 2. EMP as a function of 𝑇𝑙 in variation of 𝜏𝑙 = 𝜏ℎ = 𝜏 for 0.1; 1; 3 unit in time dimension, together with 

Curzon-Ahlborn efficiency (red-solid) as a comparison. The temperature of the hot reservoir is 𝑇ℎ = 45 nK. 

It needs to be noted that the critical temperature of BEC in harmonic potential is approximately 

42 nK based on previous studies (Myers, Peña, et al., 2022; Zettira et al., 2023); therefore, the hot and 
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cold reservoir temperatures we used have matched by this value. In Figure 2, we vary 𝜏𝑙 and 𝜏ℎ at the 

same value, we see that EMP is slightly decrease as 𝜏 increase. This result is in agreement with (Zettira 
et al., 2023). Because of the dependency of power with isochoric stroke time in the denominator of Eq. 

(21), power will decrease as well 𝜏𝑙 and 𝜏ℎ increase, the efficiency at this maximum power will also 
decrease. The reduce efficiency at raising isochoric time is caused by increasing entropy production. 
The more entropy production, the more irreversible the cycle; this irreversibility impacts reducing 

efficiency (S. Çakmak et al., 2017). However, during the cooling process the entropy will decrease, 

thereby balancing the entropy production during the heating process. This indicates that the decrease in 
EMP in Figure 2 is insignificant because the change in total entropy for a cycle is also insignificant. 

Moreover, increasing the entropy during heating is not precisely equal to decreasing the entropy during 

cooling (Camati et al., 2019) because the process is irreversible. The entropy production during isochoric 
heating can be defined by substituting the Eq. (14) to the Eq. (7), as formulated below 

     
3

3
3

4 1 1 1
4 4 h hB

B h h

h

k
S k T T e T T

 






            
. (25) 

While we set the temperature at the start of isochoric heating (𝑇1) to be constant because we want to 
explore the change of entropy when the temperature of the medium increases. The same method to find 

the entropy production during isochoric cooling by substituting Eq. (18) to Eq. (7), we get the change 

of entropy during the cooling process as follow, 
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. (26) 

For visualization, we set the temperature at the start of isochoric cooling (𝑇3) to be constant, then we 

represent the visualization of Eq. (25) and (26) in Figure 3, which is the red line for the heating process 
(Figure 3.a) and the blue line for the cooling process (Figure 3.b).  

 

 

Figure 3. The change of entropy during (a) the heating process as a function of 𝜏ℎ and (b) the change of entropy 

during the cooling process as a function 𝜏𝑙. The temperature of reservoirs are  𝑇ℎ = 45 nK and 𝑇𝑙 = 20 nK  

Figure 3 shows that entropy increases with heating stroke time and decreases with cooling stroke 
time but will reach a saturation state when reaching thermal equilibrium. The rapid increase in entropy 

production at the beginning of the heating stroke creates quantum friction, reducing efficiency (Camati 

et al., 2019). However, varying the heating and cooling stroke time with different values can 

significantly improve EMP. In Figure 4, we visualize EMP with the different values of 𝜏𝑙 and 𝜏ℎ. As we 
can see from Figure 4, EMP is significantly declining even close to Curzon-Ahlborn efficiency at long 

heating stroke times, but improving at long cooling stroke times. Adding cooling time continuously does 

not always result in a meaningful change in EMP. It proves by Figure 4.a, EMP at 𝜏𝑙 = 1 almost the 

same as 𝜏𝑙 = 3. This is related to the production of entropy during the heating and cooling strokes as 

(a) (b) 
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shown in Figure 3. Entropy production during heating and cooling strokes is a quantum signature of the 

system, which means it depends on intrinsic properties of the system, different mediums will experience 

different behaviour in the production entropy (Dann and Kosloff, 2020). Entropy production can also 
be linked to the coherence effect (Chand et al., 2021). In the case of partial thermalizations, this entropy 

production boosts EMP through residual coherence. Coherence in BEC is associated with the 

simultaneous collapse of each atom’s wave function in the lowest quantum state, forming a single, 
macroscopic wave (Donley et al., 2008). The more atoms condensed into the ground state, the more 

coherent the wave function will be. The number of atoms in the condensate state depends on 
temperature. According to Eq. (8), the closer to the critical temperature, the fewer atoms are in the 

condensed state, and the highest condensate occurs at 0 K. Increasing the heating time will make the 

atoms excited from the ground state so that the fraction of atoms in the condensate decreases, which also 
causes a decrease in coherence and EMP. Conversely, increasing the cooling time will make the atoms 

descend to the ground state, increasing the coherence and the EMP. In order to optimize efficiency, the 

heating and cooling stroke time should be different, which means the heating stroke time must be slightly 
shorter than the cooling stroke time. 

 

Figure 4. EMP as a function of 𝑇𝑙 (a) at constant 𝜏𝑙 and (b) at constant 𝜏ℎ together with Curzon-Ahlborn 

efficiency (red-solid) as a comparison. The temperature of hot reservoir is 𝑇ℎ = 45 nK. 

Nevertheless, higher efficiency does not guarantee a higher power output. Efficiency is 

maximized at long and slow processes, producing no entropy during the cycle. Friction also vanishes at 
slow expansion and compression, making the cycle completely ideal and reversible. However, power 

descent to zero at a long and slow process. To prove that, we simulate the power dimensionless (𝑃∗) as 

a function of efficiency in Figure 5. We modify Eq. (21) by replacing 𝜅 with 1 − 𝜂 from Eq. (23), which 

we get the formulation of 𝑃∗ 
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 (27) 

Here we use 𝛼𝑙 = 𝛼ℎ = 1, and other parameters are based on Figure 4. To get the comparison, 

the 𝜏𝑙 and 𝜏ℎ values are selected from the green line in Figure 4. In order to simplify the notation, let 

assume that when the cycle operates at 𝜏𝑙  =  1, 𝜏ℎ = 0.1 is denoted by case A, and when the cycle 

operates at 𝜏𝑙  =  0.1, 𝜏ℎ = 1 is denoted by case B. The maximum efficiency of A is attained at a lower 
efficiency than B, but the maximum power of A is significantly higher than B. This is because power is 
generated by the fraction of atoms outside the condensate (Myers et al., 2022b). For the case of ideal 

Bose gas, atoms in a condensed state (BEC) cannot generate or receive work because their 

compressibility are infinite (Pathria and Beale, 2011); therefore, work can only be done by the fraction 

(a) (b) 
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of atoms outside the condensate because their compressibility values are still finite. The greater the 

number of excited atoms, the greater the amount of work that can be produced. As previously stated, the 

fraction of excited atoms is temperature dependent; the higher the temperature approaches the critical 
 

 

Figure 5. Power as a function of efficiency with different values of isochoric cooling and heating stroke time. 

temperature, the more excited atoms there are. Therefore, A will have a higher power than B, even 

though their total isochoric times are the same. From this result, we get the trade-off between efficiency 

and power. An engine with high efficiency does not guarantee to produce high power, and an engine 
with low efficiency mostly produces higher power. 

4. CONCLUSION  

The result has shown that efficiency at maximum power (EMP) of a quantum Otto engine using 

BEC does not significantly decline with increasing stroke time when heating and cooling stroke times 

are equated. This is because the entropy production during the heating process is balanced by the entropy 
production during the cooling process. However, at different heating and cooling stroke time values, 

EMP could significantly improve or decline. Due to entropy production and the coherence effect, EMP 

is low at long heating stroke times and short cooling stroke times but boosted at short heating stroke 
times and long cooling stroke times. Despite higher EMP, the power of short heating stroke time and 

long cooling stroke time is much less than the power of long heating stroke time and short cooling stroke 
time. This is because power is generated by the fraction of atoms outside the condensate, which depends 

on temperature; the higher the temperature, the more excited the atoms are, and the more power is 

generated. In another case, EMP is related to the coherence effect produced by the fraction of atoms in 
the condensate state; the more atoms in the condensate, the more coherent the system is; therefore, the 

higher its EMP. Nevertheless, another feature of such interaction is that it lends finite compressibility to 

BEC because the work could be produced from the atoms in the condensate; this issue is left for further 
investigation. 
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𝝉𝒉 = 𝟏, 𝝉𝒍 = 𝟎. 𝟏 (Case A) 
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