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 We present an exact solution of the nonlinear Schrödinger equation (NLSE) 

for beam propagation in nonlinear fiber optics. It is a lossy fiber system with 

the beam as solitons. Fiber losses are understood to reduce the peak power of 

solitons along the fiber length. That is due to its value depending on the fiber 

attenuation constant of α. Considering fiber loss features on the equation, we 

write one set modification of the NLSE and make models the main topic of 

our work. We solved the model and found a straightforward analytical 
solution of modified NLSE for the system via the direct solution method. To 

the best of our knowledge, no literature has presented such as solution yet. By 

substituting them into equations, we validate solutions. It is valid as an exact 

solution to the NLSE. Lastly, we found a solution offering soliton propagation 
suitable for the system under study. 
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1. INTRODUCTION  

The nonlinear Schrödinger equation (NLSE) is a classical field equation used in physics to study 

light propagation in nonlinear fiber optics and various other phenomena such as Airy beams, rogue 

waves, plasmas, Bose-Einstein condensates, superconductivity, quantum mechanics, and nano-optical 

fibers (Zhang et al., 2019; Nisar et al., 2022). NLSE is a crucial theoretical model in physics owing to 

its unique mathematical features, which have piqued the interest of numerous researchers. NLSE-like 

equations have recently been applied to biophysics, specifically in DNA dynamics systems (Sutantyo et 

al., 2022). Additionally, nonlinear saturation in photorefractive media solitons research has captured 

interest (Katti, 2019; Ripai, Abdullah, et al., 2021; Ripai, Sutantyo, et al., 2021).  

The mathematical complexity of NLSE leads to challenges in finding solutions for many 

courses. Various settlement methods were developed using mathematics and computational techniques. 

http://jif.fmipa.unand.ac.id/
mailto:zulfi@sci.unand.ac.id
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Researchers have studied the NLSE using multiple methodologies in the context of beam propagation 

in nonlinear fiber optics. The NLSE is crucial for the study of long-distance optical communications and 

all-optical super-fast switching devices (Nisar et al., 2022). Zhou et al. (2016) also applied the (G'/G) 

expansion method to solve the problem related to NLSE in fibers. Inc et al. (2017) employed the GPRE 

method with sub-ODE Bernoulli and sub-ODE Riccati-Bernoulli. Yin et al. (2018) provided their 

solutions using the fourth-order split-step Runge-Kutta method. Bakodah et al. (2019) improved the 

adomian decomposition, a semi-analytical method for solving nonlinear differential equations, in their 

work. Ripai et al. (2020) successfully confirmed that the numerical split-step Fourier method is a reliable 

benchmark for the related case. Subsequently, Kudryashov (2021) employed the Jacobi elliptic sine 

method, while Nisar et al. (2022) employed the two analytical methods of the sub-ODE Bernoulli and 

the (G'/G) expansion. In contrast, Liu et al. (2022) conducted numerical research on the NLSE of fiber 

optics using the split-time-step Crank–Nicolson method. Later, Saputra et al. (2022) verified the bilinear 

formula for the NLSE problem. 

This paper presents a concise mathematical model that accurately solves the NLSE in nonlinear 

fiber optics. The fiber optic is treated as a lossy system, following Böhm and Mitschke's (2007) 

description, and is further simplified by Wang et al. (2021).  Loss within the fiber arises from the 

absorption of optical beam power, or energy, due to its attenuation constant, α, as described by Böhm 

and Mitschke (2007) and Wang et al. (2021). When studying beam propagation within a system, the 

attenuation feature is integrated into the NLSE. Agrawal (2013) demonstrates that we can derive this 

integration through beam propagation methods, resulting in a set of modified NLSE. This is commonly 

referred to as the model of perturbative NLSE. It's important to note that perturbation is lossy, as 

attenuation reduces the signal over distance. Certain methods outlined in the previous paragraph may 

present difficulties and require extensive mathematical development. Thus, we offer the direct solution 

method (refer to section 2) as an alternative to a simpler technique that avoids complex calculations. 

This method involves modifying the NLSE for a lossy fiber system and solving the problem by creating 

an ansatz definition beforehand, which is a mathematical model of assumptions related to the equation's 

solution function. After substituting the ansatz into the equation, we are able to reduce the NLSE to an 

ordinary differential equation (ODE).  

To find the analytical solution of a soliton (specifically, a bright soliton), we complete the 

solitary wave boundary condition of the ODE by relying on a simple calculus technique—an integral 

involving an inverse hyperbolic function. Additionally, in section 2, we discuss the properties of bright 

solitons in lossy fibers using the obtained solution. Meanwhile, in Section 3, we validate the bright 

soliton solution we discovered as an exact NLSE solution for optical beam propagation in nonlinear 

fiber optics. Finally, in Section 4, we present our conclusions. 

2. NLSE MODEL OF LOSSY FIBER SYSTEMS AND DIRECT SOLUTION METHOD  

In this paper, we mainly consider the NLSE unit in lossy fiber systems as following equation 

(Böhm & Mitschke, 2007; Wang et al., 2021):  
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Γ = αLD is the quantity related to fiber losses (Γ<1), α is the attenuation constant, and LD is the fiber 

optics dispersion length. Besides, ξ = z/LD is the dimensionless form of the pulse propagation distance, 

and τ = T/T0 is the time unit, with T0 being the width of the incident pulse. We know that |q|2q is the 

fiber optic nonlinearity, i.e., nonlinear Kerr, which balances the dispersion effect or attenuation. Since 

the third term is related to fiber losses, it reduces the peak power of solitons along the fiber length if we 

consider them as solutions. Here, we consider soliton as the object of our studies. When the second term 

in (1) is positive, we work in an anomalous dispersion system where the soliton solution is a bright 

soliton (Agrawal, 2013; Saputra et al., 2022). Now, let us solve Equation (1) using direct solution 

methods. 
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First, let us consider ansatz or the solution function of Equation (1) to satisfy: 

 ( ) ( ).exp  igq =  (2) 

g(τ) is the envelope soliton function, whose value will be determined. ν is the shift of the nonlinear 

propagation constant, whose value will also be determined. Substitute Equation (2) into Equation (1) to 

determine both values. It leads us to an ODE in Equation (3) as follow: 
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In this situation, Equation (3) becomes the dynamical evolution model for the beam envelope in fibers. 

Again, we consider it as a soliton beam. So that Equation (3) means a soliton, specifically bright solitons, 

g(τ) must be a normalized function: 0 ≤ g(τ) ≤ 1, satisfy the boundary conditions: g(0) = 1,  ġ(0) = 0, 

g(τ→±∞) = 0, and all derivatives g(τ)  for τ→±∞ equal to zero. Integrating Equation (3) and completing 

the boundary conditions, we get:  
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Equation (4) based on Equation (5) can be evaluated quickly by simple calculus techniques, i.e., an 

integral involving the inverse of hyperbolic functions. We found g = sech(τ) to be the value of the 

envelope soliton functions. Thus, the NLSE solution (Equation (1)) becomes intact in the form:  

 ( ) ( ) .
2

1
expsech 




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Equation (6) is the analytical solution of Equation (1) that we found in the fiber optics context as lossy 

fiber systems. Here, Equation (6) offers bright soliton profiles (denoted by the secant-hyperbolic 

function), which decay exponentially by the fiber losses Γ (Figure 1(b)). It is because fiber losses reduce 

the peak power of solitons along the fiber length. In other words, the fundamental soliton width increases 

during propagation due to lossy power (Figure 1(a)). 

Figure 1 represents the evolutionary curve of bright soliton in the system based on the NLSE 

analytical solution of Equation (1) in Equation (6). Refering to the curve, we can understand that the 

bright soliton profile that the secant-hyperbolic function offers in Equation (6) evolves along the fibers. 

Here, we set their evolution for a very long propagation distance with the value of the associated quantity 

of fiber losses (Γ = αLD) varying between 0 to 1. Evolution is characterized by a soliton width curve 

(T/T0) that increases dramatically along the fibers in Figure 1(a), and the peak intensity curve (|q|2) 

decreases in Figure 1(b). When the value of fiber losses Γ corresponding to the attenuation constant of 

the α set increases, as information in the figures, we find that the change in the width of the bright soliton 

(T/T0) in the unit of distance (z/LD) becomes more significant (Figure 1(a)). That indicates that the higher 

fiber losses of the system make for a more drastic reduction in power or soliton energy. As a result, the 

bright soliton profile will be found to disappear faster. In other words, it does not have invariant 

propagation along the fibers. It did not meet the experimentalists' expectations (Agrawal, 2011).   
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Figure 1 Bright soliton evolution in lossy fiber system based on solution (6): (a) the soliton width curve versus 

distance unit of ξ and (b) the soliton peak evolution. 

 
The silica fibers we use today are commonly created by a modified chemical vapor deposition 

(MCVD) process and exhibit a minimum αdB loss of about 0.2 dB/km near 1.55 μm of light wavelength 

(λ). We again calculated the loss value through the αdB ≈ λ4 relationship and illustrated it in Figure 2 

(look at the solid black line). Following the unit conversion rules in Agrawal (2013), this value 

corresponds to the attenuation constant α ≈ 0.04/km. From the minimum αdB loss itself, we can calculate 

the fiber losses quantity Γ for the width of the incident pulse T0 = 4 ps and the dispersion parameter β2 

= -20 ps2/km (experimental standard values) reach: 
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It has also shown a fairly dramatic change in the width of the soliton. Notice the blue curves in Figure 

2, they are right between the black and yellow curves in Figure 1. Despite all the experimental 

importance, we assess that solution in Equation (6) is quite accurate in predicting the evolution of soliton 

in a lossy fiber system. While the stability of the realistic soliton needs to be a further concern. 

 

Figure 2 Loss spectrum versus wavelength of a single-mode silica fiber (solid black line) and the contribution 

from Rayleigh scattering (dot-dashed curve). An blue curve illustrates the soliton width at minimum losses (αdB 

= 0.2 dB/km) near 1.55 µm. 
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Let's go back to Figure 1, we also show the evolution peak of the bright soliton, which is in 

Figure 1(b). They decay as the quantity of fiber losses Γ increases. It is not strange if we are in the realm 

of nonlinear physics. The decay of its peak intensity always follows the dilation of the soliton pulse 

profile. We have compared the two, their variation is so consistent for the same quantity of fiber losses 

Γ (Figures 1(a) and 1(b)). Since the width of the bright soliton profile dilated, the peak intensity decayed. 

The problem becomes more significant when the quantity related to fiber losses Γ is higher (Figure 1). 

Someone may ask how the dilating and decay of bright soliton peaks occur. That's because of the 

nonlinearity and dispersion effect of fibers (Agrawal, 2011). At the beginning of this section, we alluded 

to the fibers' nonlinearity in the form of nonlinear Kerr denoted by the third term in the NLSE in Equation 

(1). Nonlinearity causes the width of the bright soliton pulse profile to narrow and the peak of its 

intensity to rise along the fibers. In contrast to dispersion: characterized by a second term of Equation 

(1), it gives rise to the dilation effect on the pulse profile followed by the decay of the peak intensity. 

We recommend the books by Agrawal (2013) and Kivshar & Agrawal (2003) for readers to more easily 

understand this issue. For the bright soliton to have established stability, nonlinearity and dispersions 

must be at the right balance, and we do not find them in realistic cases (lossy fiber system). Again, we 

assess that solution in Equation (6) quite correctly predicts the evolution of solitons in lossy fibers. 

Next, we also compare the evolution of bright solitons in ideal (lossless) and lossy (realistic) 

fiber systems. It is clear by taking the quantity of fiber losses Γ = 0 (ideal) and 0 < Γ < 1 (realistic) for 

the Equation (6). Now let's consider Figure 3, when fiber losses Γ zero-valued system, bright solitons 

are shown not to evolve or stabilize along the fibers. This ideal case meets the experimentalist’ 

expectations (Agrawal, 2011; Mollenauer & Gordon, 2006). Since the Γ parameter is zero, Equation (6) 

is reduced to:  

 ( ) ( )sech exp .
2

q i =  (8) 

We know this as the exact solution of NLSE in ideal fibers (lossless) where the solitons offered are 

fundamental (Agrawal, 2011; Ripai et al., 2020). For the parameter 0 < Γ < 1, bright solitons then 

evolved along the fibers. Notice the plus-marked red lines in Figure 3 (Γ=0.05), solitons peak intensity 

decay as we found above (Figure 1(b)). From this, we can understand that solutions (6) are so powerful 

in describing the evolution of soliton fibers from Equation (1), where they can be an ideal case for the 

context of lossless fibers, i.e., when we choose Γ = 0 for our solutions. Lastly, we felt the need to validate 

the solution in Equation (6) and it was presented in Section 3. Before that, we were first interested in 

presenting the peak intensity data in Figure 3 to support a qualitative perspective. Here, we present Table 

1 as their quantitative point of view.  

 

Figure 3 Peak evolution of bright soliton in ideal (blue lines) and lossy fiber system (plus-marked red lines). 
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Table 1 is the peak intensity data of bright soliton along the fiber when Γ = 0 (ideal system) and 

0 < Γ < 1 (lossy system); we take the value Γ = 0.05. Pay attention to the tables, they are completely 

stable for the ideal system and evolved for the lossy system. The peak intensity data of bright soliton 

above confirmed they experienced peak intensity decay along the fiber as a harbinger of evolution. That 

is as presented in Figures 1-3. Thus, the solution in Equation (6) we found was quite appropriate and so 

powerful in describing the evolution of bright soliton in a lossy fiber system. For validation, let's prove 

the exact solution in section 3 below. 

Table 1 the peak intensity of the bright soliton in ideal (Γ = 0) and lossy fiber system (Γ = 0.05). 

Number 

Propagation 

Distance  
ξ = z/LD 

Peak Intensity of the 

Ideal System 

|q|2 

Peak Intensity of the 

Lossy System 

|q|2 

1 0 1.000000000 1.000000000 

2 150 1.000000000 0.000553084 

3 250 1.000000000 3.72665 × 10-6 

4 350 1.000000000 0.02511 × 10-6 

5 450 1.000000000 0.16919 × 10-9 

6 550 1.000000000   0.11399 × 10-11 

7 650 1.000000000   0.76812 × 10-14 

8 750 1.000000000   5.17556 × 10-17 

9 850 1.000000000   3.48726 × 10-19 

10 950 1.000000000   0.23497 × 10-20 

11 960 1.000000000   1.42516 × 10-21 

12 970 1.000000000   8.64406 × 10-22 

13 980 1.000000000   5.24289 × 10-22 

14 990 1.000000000   3.17997 × 10-22 

15 1000 1.000000000   1.92875 × 10-22 

 

3. VALIDATION OF THE EXACT SOLUTION 

For solution in Equation (6) to be accepted and valid, we validate the solution as an exact 

solution of NLSE unit (Equation (1)). It is clear by substituting Equation (6) into Equation (1). In 

substitution process, the first term of differential ∂q/∂ξ becomes: 
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While the second term ∂2q/∂τ2 provides value: 
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For the |q|2 component, we get: 

 ( ).sech22
==  qqq  (11) 

Finally, we can arrange the substitution process Equation (6) into the NLSE unit in Equation (1). It gives 

the same value for both sides of the equation, i.e., equal to zero (exact). 
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We have validated that the NLSE analytical solution of Equation (1) that we found in equation 

(6) via the direct solution method is an exact solution of the equation. As we have described in section 

2, the direct solution method is quite simple to extract the soliton-type solution from the NLSE even 

though the fiber is considered a lossy system (involving the integration of iΓq/2 in the equation). It 

differs from some of the methods we mentioned in the introduction, which often undergo relatively 

complex mathematical developments. Furthermore, the soliton solution given through the direct solution 

technique is also relevant. By the context of the lossy system that we discussed, even our solution can 

be transformed into a lossless NLSE solution, which provides a fundamental soliton solution that is in 

line with the expectations of the experimentalists (look back at Figure 3). However, we understand that 

each method has advantages and disadvantages. To the best of our understanding, each technique 

provides a different solution in the context of nonlinear dynamics (solutions are always technique 

based). For example, in a context that requires the interaction of two solitons in the system more relevant 

if it is extracted using a Bilinear formula (Yan & Chen, 2022). However, if there was no interaction (as 

in our case), we thought the more straightforward methods we use could be much more interesting than 

the Bilinear method, which is relatively long in mathematics.  

4. CONCLUSION 

This study has provided a deep dive into the nonlinear Schrödinger equation (NLSE) within the 

realm of lossy fiber optics, addressing the significant challenge of incorporating fiber losses into the 

NLSE's framework. Our introduction highlighted the NLSE's broad applicability and the complexities 

involved in deriving solutions, especially in systems where loss mechanisms play a crucial role. We set 

out to simplify these solutions, aiming to bridge the gap between theoretical models and practical 

applications in fiber optics. 

In conclusion, our work has successfully executed this task, utilizing the direct solution method 

to integrate the NLSE for a lossy fiber system. The result is an analytical solution, proven to be exact, 

that manifests as a bright soliton. This solution is particularly valuable because it captures the essence 
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of soliton behavior under the influence of fiber losses characterized by the parameter Γ, which is 

intrinsically linked to the attenuation constant α. The solution illustrates the physical reality of solitons 

in lossy fibers, revealing how their peak powers decay exponentially with distance and how this decay 

influences the soliton's width along the fiber. 

Our findings resonate with the objectives stated in the introduction, providing a more 

straightforward and exact solution to a complex problem that has implications for long-distance optical 

communications and other applications in nonlinear fiber optics. This research not only contributes a 

novel solution to the scientific community but also paves the way for future investigations into the 

stability and dynamics of solitons in similar lossy systems. 
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