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 Reliable real-time planning for dynamic systems is crucial in today's rapidly 

growing automated ecosystem, such as the environment and methods of 
planning a robotic system. This paper describes the rigid dynamics system with 

non-holonomic constraints on the  ℝ × S1 × SO(3) configuration space. The 

method used is the motion planning network and numeric treatment using 
physics computation which can be used for non-holonomic object systems that 

move in real-time with Jellets Invarian (JI) approach. The JI approach can result 

in a motion system equation and evaluate the model of an object with non-

holonomic constraints and also display experimental results for navigation in the  

ℝ × S1 × SO(3)  configuration space. The motion system with non-holonomic 

constraints used is Tippe top (TT). TT is a toy like a top which when rotated will 

flip itself with its stem. The author have finished in simulating the dynamics of 
TT motions in real time with the initial states that have been described with 

various coordinate in the  ℝ2 × SO(3) configuration space. Based on the results 

of previous studies on similar objects, TT was solved by the Eular-Lagrange 
Equation, Routhian Reduction Equation and Poincare. The author succeeded in 

describing the dynamics of TT motion in real time with predetermined initial 

conditions with various coordinates in the  ℝ2 × SO(3) configuration space.  
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1. INTRODUCTION  

Geometric mechanics is study of physics, mathematics and engineering, which contains many 

research topics. Many ideas and developments in geometric mechanics have played a role in other 

scientific disciplines to deal with practical problems (Holm, 2011). Applied geometric mechanics can 

be found in various fields such as robotics, vehicle dynamics, and locomotive motion in various animal 

movements involving non-holonomic mechanics (Ariska et al., 2020a). The rigid body phenomenon 

analyzed in the previous study only observed about rotating, slipping and rolling, with holonomic 

constraints of objects on a flat surface. However, their research does not analyze numerical solutions for 

asymmetric bodies with holonomic constraints. The non-holonomic system was introduced in 

mechanics by Lewis (2017) and Ariska et al. (2020a, 2020b), which meant that the system experienced 

constraints that limited the speed of the system particles in the configuration space (Holm et al., 2009). 

Constraints are conditions that limit the motion of a mechanical system so that reducing the degrees of 
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freedom (Ariska et al., 2018). Holonomic constraints always involve the speed of the system and can be 

written in the form of degree one (Shimomura et al., 2005). These constraints are found in the 

configuration space and do not reduce the degree of freedom and limit the movement of the system in 

the configuration space and momentum (Ariska et al., 2020b). The system can be described by diversity 

(manifold), which is an effort to build the coordinates of a space in the form of a collection of points, 

lines or functions (Sriyanti et al., 2020). The configuration space used in the form of Lie groups, then to 

look for constraints group theory can be employed, but in this study we only need to use differential 

calculations (Ariska et al., 2019; Ciocci et al., 2012; Ciocci & Langerock, 2007; Zobova, 2012). 

Tippe top (TT) is one of complex body rigid with non-holonomic constraints. Objects with non-

holonomic constrain are governed by dynamical equations which depend on the time-derivative of the 

system’s configuration space (Bou-Rabee et al., 2004; Johnson et al., 2020; Zobova, 2012). These 

constraints arise in many applications, ranging from mobile robot navigation to needle steering in robot 

surgery (Zobova, 2011). Generalizing comes in cases where the system’s control space is of a lower-

dimension than its configuration space. For instance, in car-like robots, the control inputs are the linear 

and angular velocities, while the configuration or robot motion space is three-dimensional. 

Consequently, a feasible trajectory in the robot’s configuration space might not be feasible with respect 

to the system’s dynamics (Broer et al., 2001; Fokker, 1952). In this paper, the dynamics analyzed are 

the dynamics of the Tippe Top (TT) moving in the configuration room ℝ × S1 × SO(3). TT as an axially 

symmetric sphere rolling and gliding on a ℝ × S1 × SO(3)  surface or inner cylinder surface according 

to Jellets Invarian (JI) reduction method, equations for motion of a rigid body. 

The equations of motion are non integrable and are difficult to be analyzed. A TT is a simple 

example of a locomotive motion system with non holonomic constraints, but the study of mechanics is 

not trivial. TT is a toy that has the form of a truncated sphere with a small peg. When the toy is spun on 

its spherical part on a flat surface or tube inner surface it will start to turn upside down to spin on its peg 

(Rauch-Wojciechowski et al., 2005). We will approach the modeling from the perspective of a 

controlled Jellets Invarian (JI), because JI is one way to express system energy firmly (Smale, 1970). In 

addition, Jellets Invarian is a dynamical system that can be described by a set of differential equations. 

It was first shown by Jellet (1872) by an approximate argument, and later proved Routh (1884) that the 

system, even if dissipative, has a conserved quantity.  In this paper, the TT motion equation is derived 

through JI method by physics computation based on Maple 18. Systems with non-holonomic constraints 

can be hidden by establishing or select one of Levi-Civita connections (Bou-Rabee et al., 2008; Rutstam, 

2010). The purpose hiding of constraint is to eliminate Lagrange multipliers in the equation of motion. 

This paper is an attempt to better understand the system with non-holonomic constraints from the 

viewpoint of geometric mechanics, which analyzed the problem of motion geometrically (Ariska et al., 

2020b, 2019; Gray & Nickel, 2000). The object motion that be discussed in this research is the TT 

motion. Given the motion of the TT is an example of the motion of objects that can move by translational 

and rotational (Blankenstein, 2003; Shimomura et al., 2005). In a study of research about TT has 

successfully solved the equations of reversed TT dynamics in the flat plane while describing the equation 

of motion using computational physics (Fowles & Cassiday, 2005). Analyzing of complex and 

complicated dynamic systems that operated on flat and spherical planes at the same time with and 

without friction has solved well by Poincare Equations.  

The dynamics of the TT on the surface in the ℝ × S1 × SO(3) configuration space with the 

helping of physics computing. Resolving this equation is not easy, because the configuration space that 

will be passed by the TT is a cylinder surface which is a curved plane that has cylinder coordinate 

variables and TT coordinates that move using three coordinate systems, so that the total number of 

general coordinates to be completed is six common coordinates, i.e. two translational coordinate and 

three rotational coordinates (Ariska et al., 2018; 2020b). In addition, researchers also analyzed and 

predicted TT movements with friction by graphic simulation in the real time. 

The problem solved in this research is how to analyze the TT motion in the computational by 

used the motion planning network with JI Method. This research applied technology in solving general 

equations of a motion system in three-dimensional (3D) space. Considering the growing development 

of science and technology in the world of education, the dynamics of objects that have a configuration 
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space that is quite complicated because it consists of translational and rotational motion which is very 

complicated if solved manually. This research is a solution for lecturers and students in completing 

complex dynamics of objects thoroughly and precisely. This study aims to analyze the dynamics of the 

mechanical system on the TT with non-holonomic constraints that doing dynamics in the ℝ × 𝑆1 ×
𝑆𝑂(3) configuration space using physics computing. 

The TT motion equation by applying group theory in the form of a rotational group using the 

Poincare equation in the flat plane has been formulated with physics computation (Broer et al., 2001; 

Zobova, 2012). In addition, previous studies on the dynamics of mechanical systems have only been 

formulated for TT that operates in the flat plane. Therefore, the authors are interested in continuing the 

research by formulating the dynamics of a system that has more complex movements, namely a TT that 

is played in a curved plane in the form of a surface in a ball with fast and without friction. Detailed 

motion predictions will be analyzed using physics computation. 

2. METHOD  

This research is a Computational Physics and math theoretical conducted with a review of 

reference about geometric mechanic system in the case of the TT that has been developed previously 

and mathematical calculations using physics computing for rigid body, especially based on Maple. This 

research is composed from Numerical treatment and present the results of some computations based on 

the exact system The method used is the motion planning network which can be used for non-holonomic 

object systems that move in real-time with Jellets Invarian (JI) approach (Rauch-Wojciechowski et al., 

2005). In case constants of motion, even if dissipative, has a conserved quantity, we can use Jellets 

Invarian (JI) approach, 𝐽 = −𝐿. 𝑞 = const. where L is the angular momentum of the Tippe Top about 

the center of mass. We prove this by using Euler equations which govern the evolution of the angular 

momentum, Straightforward calculations show that Jellet’s constant can be written as  

 

𝐽 = 𝐶𝑛(𝑅 cos(𝜃) + 𝐴𝜂̇𝑅 sin2 𝜃)     (1) 

 

We emphasize once more that the Jellet’s constant is an exact constant of motion for the Tippe 

Top (TT) whether or not there is slipping and independent of the expression for J. It is this constant that 

to some extent controls the motion of the spinning top. Indeed, it allows a Routhian reduction procedure 

resulting in relatively simple reduced equations from which we are able to recover in full detail the 

stability properties of the steady states, Where 𝑅 defined by,  

 

𝑑

𝑑𝑡

𝜕𝑅

𝜕𝑣𝜌 − ∑ ∑ 𝑐𝜆
𝜇𝜌𝑣𝜇

𝜕𝑅

𝜕𝑣𝜆
−

𝑛

𝜆=2

𝑛

𝜇=2

∑ 𝑐𝜆
𝜇𝜌𝑣𝜇𝛽1 − 𝑋𝜌𝑅 = 0,        𝜌 = 2, … , 𝑛

𝑛

𝜇=2

.                   (2) 

 

This paper used an adaptive method based on second-order numerical differential formulae due 

to Routhian Reduction (Ariska et al., 2018; Gray & Nickel, 2000) and similar to that described by Jellet 

Invarian (JI) (Kilin & Pivovarova, 2020; Rauch-Wojciechowski et al., 2005). This method has two 

desirable properties: easy implementation of time-step adaptivity and allowance for possible stiffness of 

the system. For most runs, we used a relative error tolerance 10-9 (Ariska et al., 2018; 2019; 2020a, 

2020b). The computation used is Maple 18. The dynamics of TT are clearly illustrated by Maple 18. 

 

3. RESULTS AND DISCUSSION  

Calculation of the TT Constraint is solved by the Jellets Invarian (JI) method. Constraints are 

conditions that limit the movement of a mechanical system reducing both the degrees of freedom and 
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the range of each degree of freedom (Johnson et al., 2020). Schematic dynamics TT can be seen in 

Figure 1.  

 

Figure 1 TT Dynamic Schematic in ℝ × S1 × SO(3) 

 

3.1. Vector Fields of TT in Configuration Space ℝ × 𝑺𝟏 × 𝑺𝑶(𝟑) 
 

The transformation of the rotation operator from ℝ2 × 𝑆𝑂(3)  to ℝ × 𝑆1 × 𝑆𝑂(3)  can be 

written as, 

𝑅𝜃 = (𝑅𝑥𝑟)
𝜕

𝜕𝑟
+ (𝑅𝑥𝜂)

𝜕

𝜕𝜂
+ (𝑅𝑥𝑦)

𝜕

𝜕𝑦
                                                               

      =  𝑦 cos 𝜂
𝜕

𝜕𝑟
−

𝑦

𝑟
sin 𝜂

𝜕

𝜕𝜂
− 𝑟 cos 𝜂

𝜕

𝜕𝑦
                                                 (3) 

 𝑅𝜙 = (𝑅𝑦𝑟)
𝜕

𝜕𝑟
+ (𝑅𝑦𝜂)

𝜕

𝜕𝜂
+ (𝑅𝑦𝑦)

𝜕

𝜕𝑦
                                                                

=
𝜕

𝜕𝜂
                                                                                                                (4) 

 𝑅𝜓 = (𝑅𝑧𝑟)
𝜕

𝜕𝑟
+ (𝑅𝑧𝜙)

𝜕

𝜕𝜙
+ (𝑅𝑧𝜃)

𝜕

𝜕𝜃
                                                                 

 = −𝑦 sin 𝜂
𝜕

𝜕𝑟
−

𝑦

𝑟
cos 𝜂

𝜕

𝜕𝜂
+ 𝑟 sin 𝜂

𝜕

𝜕𝑦
                                               (5) 

The system SO(3) is reduced using the Routhian procedure, so the Lagrangian system is,  

 
𝐿′(𝜃̇, 𝜙̇, 𝜓̇, 𝜃) = 𝑇(𝜃̇, 𝜙̇, 𝜓̇) − 𝑈(𝜃) 

=
1

2
(𝑚(𝑥̇2 + 𝑦̇2) + 𝐼𝜃̇2 + 𝐼sin2𝜃𝜙̇2 + 𝐼3(𝜓̇ + 𝜙̇ cos 𝜃)2) − 𝑚𝑔(𝑅 − 𝑎cos 𝜃)    (6) 

and the cyclic velocity value 𝜓̇ is 

𝜓̇ =
𝐽 − 𝐼𝜙̇𝑅 sin2 𝜃 − 𝐼3𝜙̇ cos 𝜃((𝑅 cos 𝜃 − 𝑎)

𝐼3(𝑅 cos 𝜃 − 𝑎)
                                 (7) 

  

Now, 𝛽1 is defined which is the integration constant in the integral result of equation (2) which has a 

value in the form of a constant, namely 

𝛽1 =
𝐽 − 𝐼𝜙̇𝑅 sin2 𝜃

(𝑅 cos 𝜃 − 𝑎)
                                                                           (8) 

so, due to the existence of this constant of motion the kinetic energy equation is reduced to 

 𝑇 =
1

2
(𝐼𝜃̇2 + 𝐼 sin2 𝜃 𝜙̇2 +

(𝛽1)2

𝐼3
)                                                 (9) 

while the cyclic velocity becomes, 



 Ariska et al.: Modeling of Dynamics Object with Non-Holonomic Constraints Based on Maple  

32  JIF, 14 (1), March 2022, pp. 28-36 

𝜓̇ =
𝛽1

𝐼3
− 𝜙̇ cos 𝜃                                                                              (10) 

This study analyzes the motion of the TT with low energy with the intention that the TT only 

moves on the arena in the form of a surface in the tube which is considered quite large than the size of 

the TT, and the study carried out is classically non-relativistic. So that it is obtained by physical 

computation based on Maple 18 that the JI equation is constrained for TT moving in the configuration 

space ℝ × S1 × SO(3) with low energy is, 

 

[
 
 
 
 
𝜂̈

𝜙̈

𝜃̈
𝜓̈
𝑥̈ ]
 
 
 
 

=

[
 
 
 
 
 
 
 

𝑚(𝑎 sin 𝜂 cos 𝜂 (𝑟 sin 𝜃 𝜃̈ + (𝑟 cos 𝜃 + 𝑎 sin2 𝜃)𝜃̇2)F𝑁

(
1

  𝐼 sin 𝜃
) (

𝑆𝜙

sin 𝜃
− 2𝐼 cos 𝜃 𝜃̇𝜙̇ − 𝛽1𝜃̇(1 − csc 𝜃) + 𝑚𝑔𝑎 sin𝜙 sin 𝜂)

𝑎𝑟 sin 𝜃 𝜂̇2 cos(2𝜂) + 𝑎2 cos 𝜂 (sin2 𝜃 𝜃̈ + sin 𝜃 cos 𝜃 𝜃̇2)

𝛽1𝜃̇ − 2𝐼 cos 𝜃 𝜃̇𝜙̇F𝑁 −
𝜃̇𝛽1

sin 𝜃
+ 𝑚𝑔𝑎 sin𝜙 sin 𝜂 

𝑟2𝜂̈ + 𝑎 sin 𝜂 cos 𝜂 (𝑟 sin 𝜃 𝜃̈ + (𝑟 cos 𝜃 + 𝑎 sin2 𝜃)𝜃̇2) ]
 
 
 
 
 
 
 

              (11) 

with an outer variable, 

 
|F𝑁| = 𝑚𝑔 cos 𝜂 + 𝑚𝑧̈ + 𝑚𝑟𝜂̇2   = 𝑚[𝑔 cos 𝜂 + 𝑎(𝜃̈ sin 𝜃 + 𝜃̇2 cos 𝜃) + 𝑟𝜂̇2]             (12)                

 

Initial sate of TT and initial conditions of TT’s dynamics in configuration space ℝ × S1 ×
SO(3)   are given Table 1 and 2, respectively. Numerical solution of the equations of the reverse motion 

for coordinates 𝜃(𝑡), 𝜙(𝑡), 𝜃̇(𝑡), 𝜙̇(𝑡), 𝜓̇(𝑡), 𝜂̇(𝑡), 𝑋̇(𝑡)with the TT’s initial states is in the Table 3. 

Table 1. Initial state of TT  

In=In’=I 

(gr.cm2) 

I3 

(gr.cm2) 

mtotal 

(g) 

R 

(cm) 

D 

(cm) 

45 50 13 1.3 2.6 

 

The value of initial conditions based on 𝜂(0) = 0 with 𝜃(0) various, and 𝜃̇(0) = 𝜙̇(0) = 𝜓 ̇ (0) =
𝜂̇(0) = 𝑋̇(0) =  0 can be seen on Table 4.   

Table 2. Initial Conditions of TT’s Dynamics in Configuration Space ℝ × S1 × SO(3)     

No 𝜽(𝒕) 

rad 

𝜷𝟏 

𝐠𝐦𝟐𝐫𝐚𝐝/𝐬 

𝝁 Time at reversed 

second (s) 

1 0.1 2,500 0.3 25 

2 0.2 2,500 0.3 22 

3 0.3 2,500 0.3 Not reversed 

4 0.4 2,500 0.3 Not reversed 

5 0.5 2,500 0.3 Not reversed 

6 0.6 2,500 0.3 Not reversed 

7 0.8 2,500 0.3 Not reversed 

8 1 2,500 0.3 Not reversed 

9 π/2 2,500 0.3 Not reversed 

 

Based on Table 2, it can be seen that the dynamics of TT on the ℝ × 𝑆1 × 𝑆𝑂(3)  are more 

random than TT on the ℝ2 × 𝑆𝑂(3) in Table 2 and the reversal process requires a more random and 

irregular time, namely 25 s and 22 s with an elevation angle at the start of TT rotated differently. 

Likewise, the elevation angle of the rod when the TT is rotated also has differences between the TT on 
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the inner surface of the tube and on the flat plane. The dynamic of TT in the configuration space ℝ2 ×
𝑆𝑂(3), the limit of the elevation of the rod when it is rotated until TT reverses is 𝜃 (0)  =  0.9 rad. 

Whereas the elevation angle limit of the TT’s rod that moves in the configuration space ℝ2 × 𝑆1 ×
𝑆𝑂(3)is if 𝜂 (0)  =  0,then elevation angle limit 𝜃 (0)  =  0.2 rad, and if 𝜂 (0)  =  𝜋 / 2 the elevation 

angle limit 𝜃 (0)  =  0, 2 rad. If the initial elevation angle when the TT is rotated is more than 0.2 rad 

when 𝜂 (0)  =  0 and 0.4 rad when η (0) = π / 2, then the TT could not be reversed completely using the 

rod. This occurs due to the different configuration space between ℝ2 × 𝑆𝑂(3)and ℝ2 × 𝑆1 × 𝑆𝑂(3),the 

flat surface uses Cartesian coordinates to get the equations of motion while the inner surface of the tube 

uses the coordinates of the tube to determine the equations of motion. The dynamics of TT will be more 

varied when moving on the inner surface of the tube because the coordinates in the two configuration 

spaces are different. The graph obtained by computation Maple 18 based on Table 2 can be seen in 

Figure 3. 

 

 

Figure  2. Dynamics of TT in ℝ × S1 × SO(3)when 𝜂(0) = 0 with value of 𝜃(0) heterogeneous 

Meanwhile, if the value of the initial condition of the TT moving in the configuration room ℝ ×
𝑆1 × 𝑆𝑂(3)   is changed with the elevation angle 𝜂 (0)  =  𝜋 / 2  with 𝜃 (0) varies with the initial 

conditions specified in the Table 3, it will be obtained that the computational results of the dynamics of 

TT are different from the initial conditions in Table 3. 
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Table 3. Initial Conditions of TT’s Dynamic. 

No 𝜽(𝒕) 
rad 

𝜷𝟏 

𝐠𝐦𝟐𝐫𝐚𝐝/𝐬 

𝝁 Time at reversed 

second (s) 

1 0.1 2,500 0.3 23 

2 0.2 2,500 0.3 19 

3 0.3 2,500 0.3 20 

4 0.4 2,500 0.3 22 

5 0.5 2,500 0.3 Not reversed 

6 0.6 2,500 0.3 Not reversed 

7 0.8 2,500 0.3 Not reversed 

8 1 2,500 0.3 Not reversed 

9 π/2 2,500 0.3 Not reversed 

 

Whereas the elevation angle limit of the TT’s rod that moves in the configuration space  ℝ2 ×
𝑆1 × 𝑆𝑂(3) is if 𝜂 (0)  =  𝜋 / 2 with 𝜃 (0) varies, then elevation angle limit 𝜃 (0)  =  0.4 rad, If the 

initial elevation angle when the TT is rotated is more than 0.4 rad when η (0) = π / 2, then the TT could 

not be reversed completely using the rod. Based on Table 1 and Table 3, there are differences in 

computation results between the TT moving on the surface in the tube ℝ × S1 × SO(3), if given different 

initial conditions for elevation angle 𝜂 (elevation angle when the TT rotates is different). This difference 

occurs because the angle 𝜂(0) = 0 for Table 4 while 𝜂 (0) =  𝜋/2 in Table 3. So, the initial condition 

when the TT is played determines the length of time the TT will be reversed with the stem. The graph 

obtained by computation Maple 18 based on Table 3 can be seen in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure  3. Dynamics of TT in ℝ × 𝑆1 × 𝑆𝑂(3) when 𝜂(0) = 𝜋/2 with value of 𝜃(0) heterogeneous. 
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Figure 2 and Figure 3 are the numerical results obtained by researchers in predicting the 

dynamics of TT in the  ℝ × S1 × SO(3) configuration space. This result is a continuation of research 

that has been developed previously by various studies including Branicki et al. (2006), Branicki & 

Shimomura (2006), Kilin & Pivovarova (2020), Rutstam (2010) and Tembely et al. (2019), which have 

formulated TT’s dynamics with numerical solutions with various approaches on the flat surface. The 

researcher continues by simulating the dynamics of the TT in the curved plane, namely the configuration 

space ℝ × S1 × SO(3). This research examines the dynamics of objects at low energy. TT was only 

analyzed to move in an arena in the form of an ℝ2 × SO(3) and ℝ × S1 × SO(3) (flat plane and inner 

surface of the tube) which is considered large enough from the size of the TT and the study carried out 

was classical non-relativistic. 

4. CONCLUSION  

Mechanical systems with a non-holonomic constrains in configuration space ℝ × S1 × SO(3) 

can be described by Jellet Invarian (JI) reduction, which is a system of rigid body dynamics that can be 

finished with differential equations and system energy as clearly stated and steady. Based on the results 

of the previous studies on similar object, the TT were solved by the eular-lagrange equation, Routhian 

Reduction and Poincare Equations. But, in this study the dynamics of the TT dynamics are successfully 

solved by the Jellet Invarian (JI) which is Routhian Reduction differential derived from the with the 

assistance of maple-based computation in configuration space ℝ × S1 × SO(3). The author succeeded 

in describing the dynamics of TT motions in real time with the initial conditions that have been finished 

with several coordinate, especially for cylinder coordinate. The dynamics of TT in configuration space 

ℝ × S1 × SO(3)can be illustrated using a graph by predicting the motion of the TT with various 

elevation angles when it is initially rotated with computational assistance. This article can increase 

knowledge about geometric mechanics theory and its application in analyzing mechanical systems for 

the design of an appropriate TT playground and understanding the complex motion that exist in nature. 

This computing physics is useful in describing complex motion in the field of robotics and can be a 

reference for understanding the non-holonomic constraints in mechanical technology, especially 

robotics. 
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