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 Benchmarking of the numerical split-step Fourier method in solving a soliton 

propagation equation in a nonlinear optical medium is considered. This study is 

carried out by comparing the solutions calculated by numerics with those 

obtained by analytics. In particular, the soliton propagation equation used as 

the object of observation is the nonlinear Schrödinger (NLS) equation, which 

describes optical solitons in optical fiber. By using the split-step Fourier 

method, we show that the split-step Fourier method is accurate. We also 

confirm that the nonlinear and dispersion parameters of the optical fiber 

influence the soliton propagation. 
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1. INTRODUCTION  

Solitons are solitary waves, often referred as nonlinear waves, which are envelopes or single 

wave packet or pulses that can maintain their shape stability when propagating at a constant velocity in 

a medium (Agrawal, 2013; Song et al., 2019). Based on the historical perspective reviewed by 

Kasman (2018), the term “soliton” was used initially to refer to the phenomenon of a stable isolated 

water wave, spreading in an unchanging shape along a narrow channel or canal. In the last few 

decades, solitons were investigated and developed in the field of optics by the great work of Chiao et 

al. (1964) and Zakharov and Shabat (1972). They discovered a unique solution (soliton) of wave 

propagation equations in nonlinear optical media (Kajzar and Reinisch, 2006). 

The discovery of solitons in the nonlinear optical medium is known to have led to a new field of 

applied research. Solitons are now part of natural phenomena that are investigated in various scientific 

disciplines. In the optical field, soliton has become a new trend of scientific research in the modern 

era.  Soliton in this field was initially confirmed by Hasegawa in 1973 in optical fiber as an alternative 

to overcome the loss constraints that often occur when the optical fiber used as a transmission medium 

(Agrawal, 2001). In addition to optical fibers, soliton also found in other optical fields, such as lenses 

(Grahelj, 2010) and photonic crystals (Kisvhar and Agrawal, 2003; Arteaga-Sierra et al., 2018). 

Research progress on solitons in the optical field continues rapidly, which is indicated by a 

variety of topics that have been widely explored (Agrawal, 2013).  Based on the various reviews, 

solitons in the optical medium are known as optical solitons (Kisvhar and Agrawal, 2003; Kajzar and 
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Reinisch, 2006; Grahelj, 2010; Agrawal, 2013; Song et al., 2019; Wazwaz and Kaur, 2019). 

Theoretically, it is described by a nonlinear wave propagation equation, .i.e the nonlinear Schrödinger 

(NLS) equation (Agrawal, 2013; Ripai et al., 2019; Wazwaz and Kaur, 2019).  Because of its role in 

optical technology development, such as optical fibers, the NLS equation is essential to study because 

it can explain the dynamics of the optical solitons.  

The NLS equation is known to be a mathematical model of optical solitons in the form of 

nonlinear partial differential (Grahelj, 2010; Agrawal, 2013; Wazwaz and Kaur, 2019). This equation 

is so-called because it has similarities with the one that appeared in the study of quantum physics.  

However, the potential form in the considered equation is nonlinear (Agrawal, 2013). Thus, the NLS 

equation has high mathematical complexity to study, especially in investigating an optical soliton (Lin, 

2006; Syafwan, 2012). In a simple case, the solutions (solitons) of the NLS equation has been found 

through an analytical method, namely the inverse scattering method (Agrawal, 2013). In a more 

complicated case, finding analytical solutions (solitons) of the NLS equation is still a challenging 

problem. Therefore, many kinds of research are focus on the development of a numerical method as an 

alternative approach in solving the equation. 

There are two main classifications of the numerical methods in solving the NLS equation, namely 

finite difference and pseudospectral methods (Agrawal, 2013). Taylor (2017) has shown a comparison 

of the two methods in solving the NLS equation and obtained that the pseudospectral is more 

straightforward and more accurate. In this case, the type of pseudospectral method used is the 

numerical split-step Fourier method, which is known to be relatively faster and more powerful 

compared to the finite difference method. This fact is because most of the process in the split-step 

Fourier method is performed merely through the fast Fourier transform (FFT) algorithm (Zen et al., 

2002; Taylor, 2017).  

This paper is organized as follows. In Section 2, we construct mathematical and numerical 

formulations of the NLS equation. We solve the equations by the numerical split-step Fourier method.  

In this section, we also provide an algorithm to evaluate the numerical solutions of the equation. Next, 

in Section 3, we discuss the results of the analytical and numerical calculations of the NLS equation 

and present the comparison between these solutions as a benchmarking of the split-step Fourier 

method. In the last section, we make some conclusions. 

2. METHOD 

This research is carried out theoretically. Therefore, a systematic framework is needed to explain 

the occurred physical processes. The conceptual framework is the benchmarking of the split-step 

Fourier method in solving a soliton propagation equation in a nonlinear optical medium. In achieving 

the objective, a systematic research method is arranged as follows. 

2.1 Mathematical Formulation 

The mathematical model used in this study is the NLS equation which describes the propagation 

of solitons in an optical fiber. In this case, the NLS equation reads as 

 ( )
2

22

2 2

1
sgn .

2

U U
i N U U
 

 
= −

 
 (1) 

In Eq. (1), 0U A P= is an envelope function that emitted into optical fibers, with A  and 0P  

respectively describe the envelope amplitude and peak power. Next, Dz L =  and 0T T =  represent 

space (spatial) and time of propagation in dimensionless form, DL  and 0T , respectively indicate the 

length of the dispersion area and the width of the envelope. Furthermore, ( )2sgn 1 =   states the 

envelope area in the optical fiber; +1 corresponds to normal fields while -1 correspond to anomalous 

regions experiencing dispersion disorders. Finally, N is a nonlinear parameter of an optical fiber 

(Agrawal, 2013). 
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Agrawal (2013), Eq. (1) is derived from Maxwell’s equation. It is known to have an analytical 

solution obtained by the so-called inverse scattering method. By this method, the analytical solution of 

Eq. (1) is given by   

 ( ) ( ), sech exp .
2

i
U


  

 
=  

 
 (2) 

Solution (2) will be compared with the corresponding solution obtained by numerical calculations in 

the next section.  

2.2 Numerical Formulation 

In this section, we construct numerical formulation to solve Eq. (1) by applying the split-step 

Fourier method. Following Zen et al. (2002), Agrawal (2013) and Taylor (2017), rewrite Eq. (1) in the 

form 

 ( )ˆ ˆ ,
U

D N U



= +


 (3) 

where 

 
( ) 2

2

2

sgn
ˆ

2
D i






= −


 (4) 

and   

 
22ˆ .N iN U=  (5) 

Here, D̂  is a differential operator that takes into account the dispersion properties of an optical fiber, 

while N̂  is a nonlinear operator that regulates the effect of optical fiber nonlinearity. 

The rationale for the split-step Fourier method is based on the analysis of structural problem (Zen 

et al., 2002; Agrawal, 2013). In this case, the envelope, which is subject to the dispersion and 

nonlinearity of an optical fiber, is segmented. The form of segmentation is illustrated in Figure 1. 

 

Figure 1  Illustration of the split-step Fourier method: effect of symmetry of dispersion and nonlinearity along 

optical fiber (Zen et al., 2002) 

From Figure 1, it is shown that the dispersion and nonlinear properties in optical fibers act together.  

Therefore, the solution of Eq. (3) by using the split-step Fourier method can be determined by 

assuming that when the envelope propagates at a small distance ( h ), the dispersion and nonlinear 

effects act independently. In a further review, the envelope propagation problem from z  to z h+  can 

be solved in two steps. In the first step, nonlinearity acts alone ( ˆ 0D = ), while in the second step, 

dispersion acts alone ( ˆ 0N = ) (Agrawal, 2013; Taylor, 2017). 
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Based on the two steps, we can approximate the solution of Eq. (3) in the form 

 ( ) ( ) ( ) ( )ˆ ˆ, exp exp , .U h hD hN U   +   (6) 

This solution can be simplified using the Baker-Hausdorff formula (Zen et al., 2002), i.e 

 ( ) ( ) 1 1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆexp exp exp , , , ,
2 2

a b a b a b a b a b
     = + + + − +      

 (7) 

by assuming it is independent of z  (Agrawal, 2013).  In Eq. (7), ˆ ˆ ˆˆ ˆ ˆ[ , ]a b ab ba= −  takes the form of a 

commutator. So by definition, ˆâ hD= , ˆ ˆb hN=  and ignoring the non-commute term (since it has an 

uncertain value), the solution (6) can be written in a more straightforward form as  

 ( ) ( )  ( )ˆ ˆ, exp , .U h h D N U   + = +  (8) 

In principle, the solution (8) contains a time differential component (   ), as shown in  

Eq. (4). Therefore, it becomes complicated in the algorithmic process. Thus, the exponential operator 

containing in (8) must first be evaluated in the frequency domain ( ) using the Fourier transform 

given by Suarez (2013) as follows 

 ( )( )ˆ ˆ ,O f O i


 
= − 

 
 (9) 

 ( ) 1ˆ ˆO i f O


−   
− =   

  
 (10) 

From here, we can express Eq. (8) in the form 

 ( ) ( )    ( )1 ˆ ˆ, exp exp , ,U h f hD i f hN U    −   + = − 
   

 (11) 

where f  and 
1f −

 are the Fourier transform and its inverse. The purpose of the opposite in this 

transformation is to return the exponential operator to the time domain. 

Eq. (11) is a numerical solution of the NLS equation (1) in optical fibers using the split-step 

Fourier method. Through this solution, we will evaluate how the soliton profile generated from Eq. 

(1).  We will also examine the accuracy of the split-step Fourier method as a benchmarking in solving 

the soliton propagation equation (1). The solution (11) is known to be easily or quickly evaluated 

using the fast Fourier transform (FFT) algorithm. 

2.3 Algorithm 

In this section, we evaluate Eq. (11) to see the soliton profile in optical fibers. This profile can be 

obtained through the following algorithm (Zen et al., 2002; Agrawal, 2013): 

1. Determine the optical fiber input parameters, i.e. optical fiber length ( DL ), envelope group-

velocity dispersion (GVD) parameter ( 2 ), nonlinear parameter ( N ), and initial condition of the 

envelope ( )0,U  . 

2. Determine the magnitude of change in z  ( h z=  ), the total number of z  iterations (step_num), 

number of grids in the time domain ( nt ), and time interval ( t ) given by max2T nt . 

3. Perform the calculation of Eq. (11) as many times as the step_num iteration by taking the 

operators (4) and (5). 

4. Plot the numerical solution U against coordinates  . 
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We will compare the numerical solution obtained through the above algorithm with the analytical 

solution (2). The comparisons are presented in visual forms to see the benchmarking of the split-step 

Fourier method.   

3. RESULT AND DISCUSSION 

The main discussion in this paper is the benchmarking of the numerical split-step Fourier method 

in solving the NLS equation (1).  Let us first present the visualization of analytical and numerical 

solutions of the equation. 

3.1 Analytical Solutions 

Analytical solutions of the NLS equation (1) can be calculated from the inverse scattering 

method, which is given in Eq. (2). The visual form of the analytical solution is shown in Figure 2.  

 

Figure 2 Soliton profile from the analytical solution of the NLS equation (1) 

The solution profile in Figure 2 represents the form of soliton in an optical fiber, namely in the type of 

a temporal soliton. Temporal soliton is the first type of soliton found in an optical fiber (Kisvhar and 

Agrawal, 2003; Kajzar and Reinisch, 2006; Agrawal, 2013). This type of soliton is known to occur 

when a beam applied in an optical fiber is limited in spatial. Besides, this type of soliton also has a 

unique envelope shape manifested in the time domain, as shown in Figure 2. 

Physically, solitons in this system occur when the nonlinear effect causes a self-phase modulation 

(SPM) in an optical fiber to balance the dispersion effect that responds to change in soliton velocity 

from the envelope group velocity when it propagates along the optical fiber (see Agrawal, 2013). SPM 

is known to produce changes in the refractive index of optical fiber, which causes the envelope of the 

beam to be disturbed (narrowed) along with the optical fiber. The dispersion effect of the optical fiber 

is known to create envelope velocity dependent on frequency and causes the envelope to widen. When 

the two effects balance each other, stability is emerged and then form the so-called soliton (see again 

Figure 2). 

3.2 Numerical Solutions 

The numerical solution of the NLS equation (1) using the split-step Fourier method is calculated 

from Eq. (11). We will evaluate the solution according to the algorithm presented in Section 2.3.  For 

input parameters, we consider three cases, i.e. (a) 210, 1, 1DL N= = = , (b) 210, 1, 1DL N= = − = , and 

(c) 210, 1, 2DL N= = − = . These parameters become important to look at the soliton characteristics 

resulting from the NLS equation (1). The visual form of the numerical solution is given in Figure 3. 
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Figure 3  Numerical solution of the NLS equation (1) with input parameter values: (a) 210, 1, 1DL N= = = , (b) 

210, 1, 1DL N= = − = , and (c) 210, 1, 2DL N= = − =  

Figure 3 shows the envelope profiles of the numerical solutions of the NLS equation (1). These 

profiles are obtained from the secant-hyperbolic input pulse ( sech ). The blue profiles in Figure 3 

show the input pulses, and the red ones indicate the corresponding output pulses. The output pulses are 

in the form of temporal solitons, which are, in principle, consistent with the analytical solutions 

discussed in Section 3.1. In Figure 3, it is also shown that when 2 1 =  (i.e. in the normal GVD 

region), a soliton does not exist. Otherwise, when 2 1 = −  (i.e. in the anomalous GVD region), a 

soliton exists. This fact confirms the existence of soliton in the anomalous GVD region, as also 

reported in several references, one of which is Agrawal (2013).  

In Figure 3, it is also confirmed that the stability of solitons is affected by the nonlinear nature of 

optical fibers (i.e. parameter N ). We can see in Figures 3(b) that for 1N = solitons are stable, indicated 

by the amplitude and width of the input pulse are equal to the output. Otherwise, in Figure 3(c), for 

2N =  solitons experience instability, i.e. the amplitude of output pulse is higher, and the width is 

narrower.  This instability occurs as a consequence of envelopes or pulses that propagate in a nonlinear 

medium (narrowed) (Agrawal, 2013). 

3.3 Accuracy of the Split-Step Fourier Method 

In this section, we present a visualization of the accuracy of the split-step Fourier method in 

solving the NLS equation (1). Previously, we have provided the analytical solution of the equation in 

Section 3.1, as presented in Figure 2, and the corresponding numerical solution at the beginning of 

Section 3.2, as shown in Figure 3. The comparison of the two solutions is given in Figure 4.  
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Figure 4 The numerical vs  analytical solutions of the NLS equation (1) 

Figure 4 shows that the analytical and numerical solutions are consistent. This fact suggests that 

the split-step Fourier method is powerful to apply in solving the NLS equation in a nonlinear optical 

medium.  

4. CONCLUSION 

Based on the results of numerical calculations, we conclude that the numerical split-step Fourier 

method is accurate to apply in solving a soliton propagation equation in a nonlinear optical medium.  

This method provides a relatively simple process and powerful for the NLS equation case. We 

confirmed the existence of solitons in the NLS equation propagating in a nonlinear optical medium. 
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